
rnl
UNCLASSIFIED -c*y14 dbh copi.

AD-A200 756

IDA MEMORANDUM REPORT M-362

Ada/SQL BINDING SPECIFICATIONS

Bill R. Brykczynski
* Fred Friedman

June 1988

Prepared for
WIS Joint Program Office

DTIC
P '-TE

NOV 0 9 1988

DCMMUMN,' STIT30nM tA

I 88 11 08 042
iINSUTTlUT FOR DEFENSE ANALYSES

1801 N. Beauregard Street, Alexandria, Virginia 22311

UNCLASSIFIED ,n o .o .00

UNCLASSIFEED
SRCURITo a.AICAIO O F AGE

REPORT DOCUTMENTATON PAGE ls-4
in REPRM mECUwRIy CABIFIAOI wb REFFRiL-nvz MAKINGS

unclassified _______________

2a SECURITY CLABUI1ICATMO AUIUORITYf 3 DI3TRIUONAVAILABILZTY OF REPORT

3b DSCHEDULEG Approved for public release, distribution
unlimited.

4 PEFORMING ORGANIZATION WEORT NUMBEZR(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MDA Memorandum Report M-%62

Ea NAM OF PERFOR[MING ORGANIZATION 0 OFFCE SYMBOL 7& NAME Of MONITORING ORGANIZATION

Instiute for Defense Analyses IDA OUSDA, DIMO

69 ADDRESS (C~ty, SiW., mi Zip Cede) 7b ADDRESS (City, Stae, W Zip Cede)

1801 N. Beauregard St. 1801 N. Beauregard St.
Alexandria, VA 22311 Alexandria, VA 22311

s NAME OF UNDIG/SPONSORING, f OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZIO tapeh D 934C03

WIS Joint Program Office D 9084C03
s ADDRESS (CSIty Stf. mil24p Cede) 10 SOURCE OF FUNDING NUMBERS

wis JPMO/XplT PROGRAM IPROJECT TASK WORK UNIT
VAshington, D.C. 2130.60 ELEMENT NO1 NO. INO. ACCESS ION NO.

__________________________ IT-W5-2061
11 Tn1z (Imhie Seewiy Cimwflewm

Ada/SQL Binding Specifications (U)________________
12 PERSONAL AUTHOR(S

Bill R. Brykczyusk, Fred Friedman
ie TYPE Of REPORT I13 TaME COVERED VTOFRPT(Yw fukDy 15PAGE COUNT

16 SUPPLEMEZNTARY NOTATION

17 COSATI CODES 13 SUIJECT TERM (Cewne on rmc ff mfeeuy mi 1daed4 by bbek uw~wr)

FIED ROP ISU-GOU Ada programming language; structured query langage (SQL); database
managmentsystem (DBMS); interface; binding; database definition

language (DDL); database manipulation languae (DWIL).
19 ABSTRACT (Ceamaw. - re- - If euy md ,dedif by" bIe sub)

Thle purpose of MDA Memorandum Report M-362 is to document the current version of the Ada/SQL
specifications. These specifications have been previously reported in I3DA Paper P-1944, Prelimiwy
Verion: Ada/SQL:- A Standard, Portable DBMS Interfac. 'This Memorandum Report is intended to
provide a formal reference for the Ada/SQL language specification. M-362 can be used by those persons
interested in understanding the underlying concepts of Ada/SQL and by those persons implementing
Ada/SQL sysem.

3 DITI3UINIVJAB. OF ASSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

HUNCLAS~VLDh~hDDC SAME1 AS ErT. 0DTIC USR Unclassified
noe NAM OF RESPONS1IZ INDIVIDUAL 2m TELEPHONE (Ineled wea cede) i e OPFCE SYMBOL

Mr. Bill R. Brykczynsk (703) 824-5515 DA/CSED
DO FORKM 94 MAR 83Pernem ay be dvw~exwmf SECURITY CLASSMFCA71ON Of THIS PAGE

AN Wbilo wle mebeehi UNCLASSEFTED

UNCLASSIFIED

IDA MEMORANDUM REPORT M-362

ADa/SQL BINDING SPECIFICATIONS

Bill R. Brykcyznski
Fred Friedman

June 1988

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-W5-206

UNCLASSIFIED

~ -I- - . m m m rmml m lmm mm lml "

UNCLASSIFIE

Eeew Summary

1. Introduction

The purpose of IDA Memorandum Report M-362, Ada/SQL Binding Specifications, is to document
the current version of the Ada/SQL specifications. These specifications have been previously
reported in IDA Paper P-1944, Prelimbinary Version: Ada/SQL: A Standard, Portable DBMS
Interface [IDA 86]. Prototype software implementing this interface has been reported in [IDA 86],
and IDA Memorandum Report M-361, Example Level I System Software [IDA 88a], and also IDA
Memorandum Report M-459, An Oracle - Ada/SQL Implementation [IDA 88b].

1.1 Scope

IDA Memorandum Report M-362 is intended to provide a formal reference for the Ada/SQL
language specification. M-362 can be used by those persons interested in understanding the
underlying concepts of Ada/SOL and by those persons implementing Ada/SQL systems. The
section numbers of the main body of the specification map closely to the section numbers (clauses)
of the ANSI SOL specification.

1.2 Background

Ada/SQL is a binding between the Ada programming language and the database programming
language SOL. Ada/SOL provides a Database Definition Language (DDL) and a Database
Manipulation Language (DML) capability, both expressed by compilable Ada statements. Objects
defined using the Ada/SOL DDL can be expressed using the Ada data typing facilities. These
objects are then subject to the strong type checking of the Ada compiler. The Ada/SQL DML is
defined as Ada subprogram calls which are modeled after the SOL DML. The Ada/SOL DML
subprograms provide the link between the Ada program and the underlying Database Management
System (DBMS). (IDA 86] provides an overview of the concepts behind the design of the Ada/SQL
language.

This new Ada/SQL specification improves upon the [IDA 86] version in the following ways:

" It provides precise and formal definition of the language, in the style of the ANSI SOL
standard, thereby making the relation of Ada/SOL to ANSI SOL completely clear.

" It provides actual Ada declarations that demonstrate precisely how Ada/SQL statements could
be compiled by a validated Ada compiler, although it does not require an implementation to
actually provide those declarations (similar declarations are actually used in several
implementations; Ada/SQL programs can also be preprocessed, changing the form of the
Ada/SQL statements).

v

UNCLASSIFIED

* It provides notes describing how the Ada declarations were designed, the rationale behind
certain features of the language, how Ada/SQL relates to ANSI SQL, etc.

a It is based on actual implementation experience, and so includes those features that have been
found to be readily implementable and fully compatible with ANSI SQL, while deferring other
features for later enhancements.

* It provides a comprehensive index, to aid the reader in tracing the web of references to various
constructs, that of necessity becomes labyrinthine in a standard of this sort.

1.3 References

[IDA 86] Brykczynski, Bill and Fred Friedman. 1986. Preliminary version: AdalSQL: A standard,
portable Ada-DBMS interface. Alexandria, VA: Institute for Defense Analyses. IDA Paper P-1944.

[IDA 88a] Brykczynski, Bill, Fred Friedman, and Kerry Hilliard. 1988. Example Level 1 System
SoftwareAlexandria, VA: Institute for Defense Analyses. IDA Memorandum Report M-423.

[IDA 88b] Brykczynski, Bill, Fred Friedman, and Kerry Hilliard. 1988. An Oracle-Ada/SQL
implementation. Alexandria, VA: Institute for Defense Analyses. IDA Memorandum Report M-
459.

[SQL86] ANSI X3.135-1986, Database Language SQL. New York, NY: American National
Standards Institute, Inc., 1986.

vi

UNCLASSIFIED

Preface

The purpose of IDA Memorandum Report M-362, Ada/SQL Binding Spedfications, is to
present a revised set of specifications previously reported in IDA Paper P-1944, Preliminary
Vrsio: Ada/SQL: A Standard, Portable DBMS Interface. This revision to the previous
specifications is a result of experience gained in additional prototyping, suggestions from users,
and a desire to model the specification after the ANSI SQL [SQL86J document style.

The importance of this document is based on partial fulfillment of Task Order T-W5-206, WIS
Application Software Study. These specifications will be used by the WIS program in specifying
an Ada interface to database management systems.

This document was funded in part by the Software Technology for Adaptable, Reliable Systems
(STARS) Joint Program Office. Special thanks is given to the STARS JPO for their guidance
and support.

0 G
COPY

I ,NSP~c~
0 Accession Fo~jj~

NTIS CRA&I
DTit bt! o f/

,. .,4 'r ,a

Vi,

vii
I

CONTENTS

1. Scope and field of application . . . 1

2. References* 2

3. Overview 3
3.1 Orgamnt1.................... 3
3.2 Notation..........................3
3.3 Conventions. 5
3.4 Confornzance 6
3.5 Euanple, Database. 7

4. Concepts 9
4.1 Sets 9
4.2 Data types 9

4.2.1 Character strings.....................:.: .:.:.:.:. . 10
4.2.2 Numbers.11

4.2.3 Enumeration types. 12
4.2.4 Derived types. 12

4-3 C~olumns. 12
4.4 Ta~bles 13
4.5 Integrity constraints. 13
4.6 Schema 14
4.7 The database 14
4.8 Program Environment 14
4.9 Ad-SQL interface 14
4. 10 Status indicators. 15

4.10.1lExecution status. 15
4.10.2 Indicators. 15

4.11 Sanar progrannning language............................15
4.12 Catsors. 15
4.13 Statemients 16
4.14 Ebedded yntax 16
4.1.5IPrivileges . :17

4.16 Tansactions 17

* 5. Conmnonelements 19
5.1 <character> 19
5.2 <literal> 21
5.3 <token> 28
5.4 Namies 35
5.5 <data type> 41

3 5.5.1 <characterstrintype>....................43
5-5.2 <integer type> 46
5.5.3 <oatng point type>...................47
5.5.4 <enumeraflou type>................ s0
5.5.5 <subtype ndication>. 52
5.5.6 <rage constraint>. 56

3 5.6 <value specification> and <target specification> 59
5.7 <column specification> 84
5.8 <set function specification>. 102
5.9 <value epression> 113

ix

5.10 <predicate> . 130
5.11 <comparison predicate> 131
5.12 <between predicate> 137
5.13 <in predicate> 140)
5.14 <l~ke predicate> 144 I
5.15 <null predicate> 149
5.16 <quantified predicate>. 150
5.17 <exists predicate>. 153
5.18 <search condition> 154
5.19 <table expression> 157
5.20 <fromi clause>. 159
5.21 <where clause>. 162
5.22 <group by clause>. 164
5.23 <having clause> 166
5.24 <subquery>. 168
5.25 <query specification>. 176
5.26 <table name with optional column list>. 186

6. Schema definition language. 189
6.1 <schema, 189

6.1.1 <authorization package> 192
6.1.2 <schemapackage declaration> 194
6.13 <schemiapackage body> 198
6.1.4 <context clause>. 200
6.1.5 <type declaration> 205
6.1.6 <subtype declaation> 208
6.1.7 <numberdeclaration>. 210

6.2 <tabledefinitlon> 212
6.3<column definition>. 215
6.4 <unque constraint definition>. 217
6.5 <vew definition>. 219
6.6 <privilege definition>. 223

7. Progranm environmient. 227
7.1 <Ada/SQL compilationunit>. 227
7.2 <Ad/SQL DML unit>. 228
7.3<SQL statetnent>. 231
7.4 <global variable package> and <local variable package> 233

8. Dama manipulation language. 236
8.1 <close statemnent>. 237
8.2 <conmmit statement>. 239
8.3 <declare cursor> 240
8.4 <delete statement: positioned> 248
8.5 <delete statemnt: searched> 250
8.6 <fetch statemnent>. 252
8.7 <insert statement>. 259
8.8 <open statement>. 266
8.9 <rollback statement>. 268
8.10 <select sttement>. 269
8.11 <update statement: positioned>.... 278
8.12 <update, statement: searched>. 283

9. Index. 287

Xp

UNCLASSEFIED

Database Language - Ada/SQL

1. Scope and field of appicaton

This standard specifies the syntax and semantics of two database languages:

1) A schema definition language (Ada/SQL-DDL), for declaring the structures and integrity con-
straints of an Ada/SQL database.

2) A data manipulation language (Ada/SQL-DM.L), for declaring the executable statements of a
specific database application program.

This standard defines the logical data structures and basic operations for an Ada/SQL database. It pro-
vides functional capabilities for designing, accessing, maintaining, controlling, and protecting the data-
base.

This standard provides a vehicle for portability of database definitions and application programs between
conforming implementations.

Ada/SQL is designed as an extension to ANSI SQL, adding Ada's type declaration and checking capa-
bilities to SQL, and expressing data manipulation operations in standard, compilable Ada. It is designed
such that it can be implemented as a front-end to a database management system implementing Level 2
of the ANSI standard SQL.

NOTL- Additional Ada/SQL language is planned for later addenda to this standard. Major topics under
consideration for such addenda include referential integrity, enhanced transaction management,
specification of certain implementor-defined rules, enhanced character handling facilities, and support
for national character sets.

This standard applies to implementations that exist in an environment that may include application pro-
gramming languages, end-urn query languages, report generator systems, data dictionary systems, pro-
gram library systems, and distributed communication systems, as well as various tools for database
design, data administration, and performance optimization.

S

SScope mrid field ofapledn

5. 1 iimsl I III1 II iIIII-I I III

UNCLASS(InD

2. References

This standard is intended for use with the following American National Standards. When these stan-
dards are superceded by revisions approved by the American National Standards Institute, the revisions
shall apply.

ANSI1MIL-STD-1815A (1983), Military Standard Ada Programming Language.

ANSI X3.135-1986, Database Language - SQL.

Database Language Ada/SQL
2

UNCLASSIFIED

3. Oerew

3.1 Orpudzadon

The organization of this standard is as follows:

1) 3.2, 'Notation" and 3.3, "Conventions" define the notations and conventions used in this standard.

2) 3.4, "Conformance" defines conformance criteria.

3) 3.5, "Example database" prer mts the definition of the database used in the examples.

4) Clause 4, "Concepts" defines terms and presents concepts used in the definition of Ada/SQL.

5) Clause 5, "Common elements" defines language elements that occur in several parts of the
Ada/SQL language.

6) Clause 6, "Schema definition language" defines the Ada/SQL facilities for specifying a database.

7) Clause 7, "Program environment" defines the way Ada/SQL statements are included in Ada pro-
grams.

8) Clause 8, "Data manipulation language" defines the data manipulation statements of Ada/SQL.

3.2 Notation

The syntactic notation used in this standard is BNF ("Backus Normal Form", or "Backus-Naur Form"),
with the following extensions:

1) Square brackets (a) indicate optional elements.

2) Ellipses (...) indicate elements that may be repeated one or more times.

3) Braces ({}) Iroup sequences of elements.

In the BNF syntax, a production symbol <A> is defined to "contain" a production symbol if
occurs someplace in the expansion of <A>. If <A> contains , then is "contained in"
<A>. If <A> contains , then <A> is the "containing" <A> production symbol for .

A production symbol <A> is defined to "immediately contain" a production symbol if
occurs someplace in the expansion of <A>, and there is no other instance of production symbol <A>

COverview
3

UNCLASSEFEED

in the expansion that also contains that particular instance of . If <A> immediately contains
, then is "immediately contained in" <A>. If <A> immediately contains , then <A>
is the "immediately containing" <A> production symbol for .

References to Ada production symbols use the Ada notation, which can readily be distinguished from
Ada/SQL notation. Ada/SQL production symbol names are enclosed in angle brackets, with words
separated by spaces. Ada production symbol names are not enclosed in angle brackets, and words are
separated by underscores.

Database Language Ada/SQL
4

UNCLASSEFIED

3.3 Conventions

Syntactic elements of this standard are specified in orms of:

1) Function: A short statement of the purpose of the element.

2) Format: A BNF definition of the syntax of the element.

3) Effective Ada Declarations: Ada specifications for constructs that could be used to enable Ada com-
pilation of the element.

4) Example: Examples of the use of the element, in complete Ada/SQL statements.

5) Syntax Rules: Additional syntactic constraints not expressed in BNF that the element shall satisfy.

6) General Rules: A sequential specification of the run-time effect of the element.

7) Notes: Comments on design decisions made in defining Ada/SQL, the rationale behind the effective
Ada declarations, and how Ada/SQL relates to ANSI SQL. The Notes also include indications of
divergence of Release 1 implementations from this standard. Release I implementations chronolog-
ically preceded this standard, did not implement all features, and implemented some features
slightly differently.

NOTE: The effective Ada declarations are presented in a style designed to be demonstrative, rather than
rigorous. If the declarations are assumed to all be contained within a single declarative region, then the
order of presentation in this document is not the order required for visibility of dependent declarations.
Naming conflicts that may arise due to capricious choice of table and/or type names are also not
addressed.

In the Syntax Rules, the term "shall" defines conditions that are required to be true of syntactically con-
forming Ada/SQL language. The treatment of Ada/SOL language that does not conform to the Formats
or the Syntax Rules shall be of one of the two following implementor-defined forms:

1) A language processor reading Ada/SQL source language shall flag the error, or

2) The exception SYNTAX..ERROR shall be raised when a program attempts to execute a noncon-
forming statement.

In the General Rules, the term "shall" defines conditions that are to be tested at run-time during the exe-
cution of Ada/SQL statementk. If all such conditions are true, then the statement executes successfully
and no exceptions are raised. If any such condition is false, then the statement does not execute success-
fully, the statement execution has no effect on the database, and an exception is raised as noted in the
rule, or the program executing the statement is erroneous.

NOTE: There are certain rules that must be obeyed by Ada/SQL programs, but, due to the potential
difficulty of detecting their violation, for which this standard does not require Ada/SQL systems to

£ Overylew
5

UNCLASSIIlD

detect violation. Any program causing one of these rules to be violated is considered erroneous, and the
effect of erroneous execution is unpredictable. An implementation detecting violations of such rules
may raise the appropriate exception, as noted in the rules.

NOTM: The ANSI SOL concept of SQLCODE is not used in Ada/SOL; status returns are instead han-
ded by Ada exceptions. Enhancements to this standard are planned to provide additional status infor-
mation. Release 1 implementations have exception names differing from those specified in this stan-
dard. (The exception names used here are based on planned ANSI SOL enhancements; specification of
these enhancements was not yet available when the Release I implementations were designed.) The
correspondence of exception names is as follows:

This standard name Release 1 implementation name
NO-DATA NOT.FOUND.ERROR

DATA-EXCEPTION, CONSTRAINT-ERROR CONSTRAINT - ERROR, NULL-ERROR *

INVAIDCURSORSTATE INVALIDCURSORSTATE.ERROR
CARDINALITYVIOLATION i UNIQUE.ERROR

*Release I implementations raise one or the other of these two exceptions for conditions where this stan-
dard requires either DATAEXCE'ION or CONSTRAINT...ERROR to be raised. In general,
DATA.EXCEPTION is used to indicate data values out of range or otherwise in error, and is chosen to
be consistent with new emerging ANSI SOL standards. However, there are instances where implemen-
tations dependent on the effective Ada declarations cannot raise DATA-EXCEPTION, but must
instead depend on Ada semantics to raise CONSTRAINT-ERROR. Hence, this standard requires
CONSTRAINT-ERROR, rather than DATA-EXCEPTION, to be raised in those cases, which involve
the assignment of database values to program variables.

A conforming implementation is not required to perform the exact sequence of actions defined in the
General Rules, but shall achieve the same effect on the database and the executing program as that
sequence. The term "effectively" is used in the General Rules to emphasize actions whose effect might
be achieved in other ways by an implementation.

The term "persistent object" is used to characterize objects such as <schema>s that are created and
destroyed by implementor-defined mechanisms.

NOTE: Enhancements to this standard are planned to define the mechanisms for creating and destroying
persistent objects.

In this standard, clauses begin on a new page, and in clause 5, "Common elements" through clause 8,
"Data manipulation language" subclauses begin a new page. The resulting white space is not significant.

3.4 Conformance

This standard specifies conforming Ada/SQL language and conforming Ada/SQL implementations.
Conforming Ada/SQL language shall abide by the BNF Format and associated Syntax Rules. A con-
forming Ada/SQL implementation shall process standard conforming Ada/SOL language according to

Database Language Ada/SQL
6

UNCLASSIFIED

the General Rules.

A conforming implementation may provide additional facilities or options not specified by this standard,
but only insofar as they do not invalidate any of the BNF Formats, General Rules, or Syntax Rules of
this standard. A conforming implementation must report the appropriate errors when processing non-
conforming Ada/SQL language, and must process conforming Ada/SQL in a conforming manner.

A conforming implementation need not actually produce the effective Ada declarations shown in this
standard, although definition of the corresponding Ada bodies would enable execution of Ada/SQL
statements; such an implementation is called a rnitme system. For example, a conforming implementa-
tion might read Ada/SQL programs and produce modified source code, replacing Ada/SQL statements
with embedded ANSI SQL statements or calls upon procedures of an ANSI module. Such an imple-
mentation is called apreprocessed system.

3.5 Example Database

The database used for the examples is designed to be demonstrative of Ada/SQL constructs, not of data-
base programming practices. It is therefore very concise and simple. The examples assume that all
declarations have been made directly visible. The example database is as follows:

wi th SCHEMADEFINITION;
see SCHEMA_DEFINITION;

package EXAMPLE.AUTHORIZATION is

function EXAMPLE Is new AUTHORIZATIONIDENTIFIER;

end EXAMPLEAUTHORIZATION;

package EXAHPLE _TYPES iS

package ADA-SOL Is

type DWPLOYEEyNAME Is new STRING (1 .. 30);

type BOSSNAME is new EMPLOYEENAME;

type EMPLOYEE SALARY is digits 7 range 0.00 .. 99_999.99;

type HOURLYWAGE_FORCOMPUTATIONS is new EMPLOYEESALARY;

subtype HOURLYWAGE Is HOURLY _WAGEFORCOMPUTATIONS range 0.00 .. 48.08;

end ADA SQL,

end EXAMPLETYPES;

9 Overview
7

WNMSIFIED

with SCHEMA-DEPINITION, EXAMPLE_AUTHORIZATION, EXAMPLETYPES;
use SCHEMADEFINITION, EXAMPLE-AUTHORIZATION;

package EXAMPLESDL Is

package ADA-SQL Is

Use EXAMPLETYPES. ADA SOL;

SCHEMAAUTHORIZATION • IDIITIFIER - EXAMPLE;

subtype EMPLOYEENAMENOTNULLUNIQUE Is ENPLOYEE-NAME;

type MPLOYEE I s
record

NAME EMPLOYEENAMENOTNULLUNIQUE;
SALARY EMPLOYEE_SALARY;
MANAGER EMPLOYEENAME;

end record;

type NEW D4PLOYEEFILE I s

record
NAME IPLOYEENAME_NOTNULLUNIQUE;
SALARY EMPLOYEESALARY;
MANAGER EMPLOYEENAME;

end record;

type ONEDIEPLOYEE TABLE Is
record

NAME EMPLOYEENAMENOTNULLUNIQUE;
SALARY EMPLOYEESALARY;
MANAGER EMPLOYEENAME;

end record;

type MANAGERS I s
record

NAME :EM4PLOYEENAMENOTNULLUNIQUE;
end record;

end ADASOL;

end EXAMPLESDL;

For convenience, the declarations of program variables used with each example are shown with the
example. If the examples are to be taken as part of an actual conforming Ada/SQL program, the
declarations should, of course, be considered to be placed in one or more <global variable package>s
or <local variable package>s, and then made directly visible from the examples.

Database Language Ada/SQL
8

UNCLASSIFIED

4. Concepts

4.1 Sets

A set is an unordered collection of distinct objects.

A multi-set is an unordered collection of objects that are not necessarily distinct.

A sequence is an ordered collection of objects that are not necessarily distinct.

The cardinality of a collection is the number of objects in that collection. Unless specified otherwise, any
collection may be empty.

4.2 Data types

A type is a set of representable values. A value belongs to a type if it is within the set. The logical
representation of a value is a <literal>. The physical representation of a value is implementor-defined,
but must provide all the logical properties required by this specification, as well as those required by the
Ada standard when values are stored in Ada program variables.

The set of possble values within a type can be further subjected to a condition that is called a conswaint
(the case where the constraint Imposes no restriction is also included); a value is said to satisfy a con-
straint if it satisfies the corresponding condition. A subtp is a type together with a constraint; a value is
said to belong to a subtype of a given type if it belongs to the type and satisfies the constraint.

The declaration of a type specifies a name to be used to refer to the type and may also specify a con-
straint. Values of a type are represented in a format that may permit values not satisfying the constraint
(if any); the set of values relevant to the representation is called the base type. Ada program representa-
tion may be different from database representation, so the set of values in a base type may differ depend-
ing on whether they are program values or database values. Where it is necessary to make the distinc-

r tion, base type refers to the database base type, while Ada base type specifically refers to the program
base type.

For <type declration>s not syntactically permitting a constraint, the name specified denotes the base
type. For <type declaration>s permitting a constraint, the base type is anonymous (not named), and the
name specified denotes the subtype which includes all the values of the base type if no constraint is actu-

ally specified, or, if a constraint is given, all the values of the base type satisfying the constraint. This
subtype denoted by the name is called the first-named subtype. The term data type is used to refer to the
base type or first-named subtype, as appropriate, denoted by a name declared in a <type declaration>.

Just as a <type declaration> declares a name as denoting a data type, so does a <subtype declaration>
declare a name as denoting a subtype. However, a base type is also a subtype of itself; such a subtype
corresponds to a condition that imposes no restriction. Consequently, the name declared in a <type
declaration> also denotes the appropriate subtype.

A value is primitive, in that it has no logical subdivision within this standard. (Although individual

9 Concepts

r " " ! i9

UNCLASSUM

characters of character strings can be accessed in Ada, they may not be individually accessed in
Ada/SQL statements within Ada programs.) A value is a null value or a nonnull value. (Null values may
be stored in a database, but not in Ada program variables. When referring to values in an Ada program,
<indicator variable>s and <indicator value>s are used to flag whether or not the values are null. A null
Ada character string is not the same as the null Ada/SQL character string value.)

A null value is an implementor-defined data type dependent special value that is distinct from all nonnull
values of that data type.

A nonnull value is of one of four classes of data type: integer, floating point, character string, or
enumeration. Only values of the same data type are comparable, however, provision is made for con-
verting between closely related data types.

Typing is applied to program values, which result from evaluating program variables, <literal>s, and
<named number>s; program variables used to receive values retrieved from a database via <target
specification>s; database columns; and database values, which result from the execution and evaluation
of database operations.

A value assigned to a program variable or a database column must belong to the subtype of the variable
or column. An exception is raised if assignment of a value out of range is attempted to a program vari-
able. Constraint checking on assignment to database columns is more difficult; an implementation may
raise an exception if possible. In any case, programs assigning values out of range to database columns
are erroneous.

4.2.1 Character strings

A character string consists of a sequence of characters of the ASCII character set. Although they can-
not be individually accessed from Ada/SQL, each character in a character string has an integer index,
with the index of each character being one less than the index of the following character (if any). A char-
acter string subtype is characterized by: (1) the subtype of index, (2) whether it is constrained or uncon-
strained, and, if constrained, the lower and upper bounds of the index (same as those of the index sub-
type), and (3) the subtype of the characters. All characters (if any) within a character string must belong
to the subtype defined for the characters of that character string data type.

A character string program value or program object has a lower index bound, L, and an upper index
bound, U.

If the character string is of an unconstrained subtype and L is less than or equal to U, then both L and U
must lie within the range of the index subtype. The length of the character string is U-L+I. If the subtype
of the character string is unconstrained and L is greater than U, then the length of the character string is
zero (a string of no characters, or a null Ada character string).

If the character string is of a constrained subtype, then L and U must be equal to the lower and upper
bounds, respectively, of the index subtype declared for the character string subtype. All character
strings of the same constrained subtype are of the same length, U-L+I.

A character string database value is not characterized by its index bounds, but only by its length, the
number of characters it contains. All character strings derived from the same database column are con-
sidered to have the same length, whether the column is of a constrained or an unconstrained subtype.
For a constrained subtype, this length is the length declared for the subtype. For an unconstrained sub-
type, the length is the maximum length possible, i.e., u-+1, where I and u are the lower and upper

Database Language Ada/SQL
10

UNCLASSIFIED

bounds, respectively, of the index subtype.

Tb account for the differing treatment of character strings between a program and a database, the follow-
ing effects applying when transferring values between program and database:

1) When a character string taken from the database is stored in a program variable, the first character
of the string to be stored is stored in the first character of the variable, then successive characters of
the string are stored in successive characters of the variable.

2) When a character string taken from the database is stored in a program variable, a <last variable>
is set to indicate the index of the last character stored. The character string stored is equal to that
taken from the database, except that one or more trailing blanks may be removed from the database
value. Th treatment of trailing blanks is implementation dependent, and any program whose effect
depends on the treatment of trailing blanks is erroneous. If a character string value contains more
characters than does the program variable into which it is to be stored, an exception is raised. Note
that storing a particular character string value into a program variable may raise an exception in one
implementation but not in another, depending on the way trailing blanks are handled.

NOT The index of the last character stored will be the appropriate index value in the character
string program variable, except in the case where: (1) the <out variable> into which the character
stringvalue is to be stored is expressed as <type mark> (<variable name>) (an Ada type conver-
sion), (2) the data type denoted by the <type mark> is a constrained character string data type, and
(3) the index bounds of the constrained character string data type are not the same as the index
bounds of the program variable denoted by the <variable name> (both index bounds must encom-
pass the same number of characters, however). In this case, the index value that is stored is that
ppropriate for the constrained character string data type denoted by the <type mark>. For exam-
ple, consider a constrained character string data type with index bounds of 11O, and a character
string program variable with index bounds of 11-20. If five characters are stored in the variable, the
<last variable> will be set to 5; the appropriate index value in the program variable is 15.

3) When a character string program value is stored in a database column, it is padded with trailing
blanks as necessary to the appropriate length. If the character string program value is longer than
the database column will permit, the program causing the store is erroneous.

Two character strings are comparable if and only if they are of the same data type. A value of any char-
acter string data type can be converted to any other character string data type. A character string is
identical to another character string if and only if it is equal to that character string in accordance with
the comparison rules specified in 5.11, "<comparison predicate>".

4.2.2 Numbers

A number is either an integer value or a floating point value. Two numbers are comparable if and only if
they are of the same data type. A value of any integer data type can be converted to any other integer
data type. A value of any integer or floating point data type can be converted to any floating point data
type. An Ada program value of any floating point data type can be converted to any integer data data
type - this latter conversion is not permitted for database values.

An integer subtype is characterized by the lower and upper bounds of the range of values it contains. All
integers between the lower and upper bounds, inclusive, belong to the subtype. A range with the lower
bound greater than the upper bound is a null range; no integers belong to the subtype.

C gConcepts
.' *L11

UNCLA ED

A floating point subtype is characterized by its accuracy and by the lower and upper bounds of the range
of values it contains. The accuracy is a positive integer that specifies the minimum number of significant
decimal digits. All real numbers between the lower and upper bounds, inclusive, belong to the subtype,
and are represented in both the program and the database to at least the accuracy specified. (The
epresentations used in the program and the database may be different.) A range with the lower bound

greater than the apper bound is a null range; no real numbers belong to the subtype.

Assignment of an integer value to an integer program variable or database column is exact.

Whenever an integer or floating point value is assigned to a floating point program variable or database
column, an approximation of its value is represented in the data type of the target, retaining at least the
accuracy of the target.

4.2.3 En types

An enumeration data type is characterized by its enumeration literal values. Both characters and
identifiers may be used as enumeration literals. An enumeration data type with only character enumera-
tion literals is said to be a character data type. Two enumeration values are comparable if and only if
they are of the same data type. A value of an enumeration data type A may be converted to a value of
another enumeration data type B if and only if there exists a data type C such that (1) C is not a derived
type, (2) either A is the same as C or A is derived from C, and (3) either B is the same as C or B is
derived from C. C is called the ultimate parent type of both A and B.

4.2.4 Derlved types

A derived data type belongs to one of the four classes of data type: character string, integer, floating
point, or enumeration. It inherits the characteristics of the data type from which it is derived, which is
called the parent data type. The way in which data types are derived from each other affects the converti-
bility of enumeration values.

4.3 Colmms

A column is a multi-set of values that may vary over time. All values of the same column are of the same
data type and are values in the same table. A value of a column is the smallest unit of data that can be
selected from a table and the smallest unit of data that can be updated.

A column has a description and an ordinal position within a table. The description of a column includes
its data type and an indication of whether the column is constrained to contain only nonnull values. The
description of a character string column includes its length attribute. The description of a floating point
numeric column includes the accuracy and range of its numbers. The description of an integer numeric
column includes the range of its numbers. The description of an enumeration column includes the
enumeration literals. Note that column and program variable descriptions, for the purpose of determin-
ing comparability and convertibility, depend on the data type, not the subtype. When values are stored in
a column or a program variable, subtype constraints may be checked to determine the legality of the
operation.

A named column is a column of a named table or a column that inherits the description of a named
column. The description of a named column includes its name.

Database Language Ada/SOL
12

UNCLASSIFIED

4.4 Tables

A table is a multi-set of rows. A row is a nonempty sequence of values. Every row of the same table has
the same cardinality and contains a value of every column of that table. The i-th value in every row of a
table is a value of the i-th column of that table. The row is the smallest unit of data that can be inserted
into a table and deleted from a table.

The degree of a table is the number of columns of that table. At any time, the degree of a table is the
same as the cardinality of each of its rows and the cardinality of a table is the same as the cardinality of
each of its columns.

A table has a description. The description includes a description of each of its columns.

A base table is a named table defined by a <table definition>. The description of a base table includes
its name.

A derived table is a iable derived directly or indirectly from one or more other tables by the evaluation of
a <query specification>. The values of a derived table are those of the underlying tables when it is
derived.

A viewed table is a named derived table defined by a <view definition>. The description of a viewed
table includes its name.

A table is either updatable or read-only. The operations of insert, update, and delete are permitted for
updatable tables and are not permitted for read-only tables.

A grouped table is a set of groups derived during the evaluation of a <group by clause>. A group is a
multi-set of rows in which all values of the grouping column(s) are equal. A grouped table may be con-
sidered as a collection of tables. Set functions may operate on the individual tables within the grouped
table.

A grouped view is a viewed table derived from a grouped table.

4.5 Integrity constraints

Integrity constraints define the valid states of the database by constraining the values in the base tables.
Constraints may be defined to prevent two rows in a table from having the same values in a specified
column (..NOT.NULLUNIQUE subtype suffix) or columns (<unique constraint definition>) or to
prevent a column from containing a null value (.NOT..L.LL subtype suffix).

Integrity constraints are effectively checked after execution of each <SQL statement>. If the base table
associated with an integrity constraint does not satisfy that integrity constraint, then the <SQL state-
ment> has no effect and the appropriate exception is raised.

Data types and subtypes may also constrain the ranges of values that may be stored within a column.
Requiring subtype constraint checking may significantly impair the performance of Ada/SQL implemen-
tations dependent on database management systems not performing such checking, so subtype con-
straint checking is not required by this standard. An implementation performing subtype constraint

Concepts
13

UNCLASSIFIED

checking may raise the DATk..EXCEFION exception for violation of the constraint. The execution of
a program that would cause a subtype constraint to be violated is erroneous. Subtype constraints are
always checked on assignment of database values to Ada program variables.

4.6 Schemas

A <schema> is a persistent object specified by the schema definition language. It consists of a <schema
authorization clause> and all <table definition>s, <unique constraint definition>s, <view
definition>s, and <privilege definition>s known to the system for a specified <authorization identifier>
in an environment. The concept of environment is implementor-defined.

The tables, views, and privileges defined by a <schema> are considered to be "owned by" or to have
been "created by" the <authorization identifier> specified for that <schema>.

NOT,- An implementation may provide facilities (such as DROP TABLE, DROP VIEW, ALTER
TABLE, and REVOKE) that allow the definitions of the tables, views, and privileges for a given
<authorization identifier> to be created, destroyed, and modified incrementally over time. This stan-
dard, however, only addresses the <schema>s that represent the definitions known to the system at a
given time.

4.7 The database

The database is the collection of all data defined by the <schema>s in an environment. The concept of
environment is implementor-defined.

4.8 Program Environment

An Ada/SQL application program is a segment of executable code, possibly consisting of multiple com-
pilation units. Also part of the program environment to be referenced by application program compila-
tion units are: (I) the schema definition language, including definitions of database data types, tables,
and columns, (2) <global variable package>s and <local variable package>s, defining all the variables
that will be used for communication between the program and the database, as weln as <correlation
name>s referenced in <SQL statement>s, and (3) the Ada/SQL predefined environment, containing
declarations that facilitate writing portable programs.

4.9 Ada-SQL Interface

Ada/SQL provides Ada programs with the ability to manipulate data controlled by a database manage-
ment system, and also to exchange data with that database management system. The exchange of data is
accomplished between values in Ada program variables and values in database columns. Treatment of
values in Ada program variables is according to Ada semantics. Treatment of values in database
columns is, minimally, according to SQL semantics. Ada/SQL systems may also implement extensions
to SQL that allow values in database columns to be treated more in accordance with Ada semantics
(e.g., subtype checking).

Database Language Ada/SQL
14

UNCLSSI IED

4.10 Status indicators

4.10.1 Execution status

No special indication is provided for an Ada/SQL statement that executes successfully. An exception is
raised when an attempted Ada/SQL statement does not execute successfully.

NOTE Extensions to Ada/SQL are planned that will provide more detailed status reporting.

4.10.2 Indicators

Ada program variables assume or supply the values exchanged with the database. Ada program variables
must, when evaluated, have a defined value. There is a special database null value, however, that is
different from all other values of a particular data type. This value is not represented in an Ada program
variable of that type; indicators are instead used to indicate whether or not a value is null. An indicator
has a value of enumeration type INDICATORVARIABLE, with literals NULL_VALUE and
NOTNULL. When supplyi.ag a value to the database, a program <indicator value> determines
whether or not the supplied value is null. When retrieving a database value into a program variable, an
associated <indicator variable> is set to indicate whether or not the retrieved value is null.

4.11 Standard progro ng language

This standard specifies the actions of <SQL statement>s when those <SQL statement>s are invoked
by programs that conform to the standard Ada programming language. The term "standard Ada pro-
gram" refers to programs that meet the conformance criteria of the Ada standard listed in clause 2,
"References".

4.12 Cursors

A cursor is specified by a <declare cursor>.

For each <declare cursor> in a program, a cursor is effectively created by the execution of that
<declare cursor> and destroyed when the program defining it terminates or when another cursor is
created with the same <cursor name>.

NOTE: This is different from the ANSI SOL definition of cursor creation and destruction, but the
differences do not have any operational impact on database effects.

A cursor is in either the open state or the closed state. The initial state of a cursor is the closed state. A
cursor is placed in the open state by an <open statement> and returned to the closed state by a <close
statement>, a <commit statement>, or a <rollback statement>.

E
A cursor in the open state designates a table, an ordering of the rows of that table, and a position relative
to that ordering. If the <declare cursor> does not specify an <order by clause>, then the rows of the
table have an implementor-defined order. This order is subject to the reproducibility requirement within

Concepts
15

nlKil iimi

U (.I I I I oi i U!-

UNCLASSIVED

a transaction (see 4.16, "Transactions"), but it may change between transactions. Any program whose
effect depends on the ordering of rows in such a table is erroneous.

The position of a cursor in the open state is either before a certain row, on a certain row, or after the last
row. If a cursor is on a row, then that row is the current row of the cursor. A cursor may be before the
first row or after the last row even though the table is empty.

A <fetch statement> advances the position of an open cursor to the next row of the cursor's ordering
and retrieves the values of the columns of that row. An <update statement: positioned> updates the
current row of the cursor. A <delete statement: positioned> deletes the current row of the cursor.

If a cursor is before a row and a new row is inserted at that position, then the effect, if any, on the posi-
tion of the cursor is implementor-defined. Any program whose effect depends on that position is errone-
ous.

f a cursor is on a row or before a row and that row is deleted, then the cursor is positioned before the
row that is immediately after the position of the deleted row. If such a row does not exist, then the posi-
tion of the cursor is after the last row.

If an error occurs during the execution of an <SQL statement> that identifies an open cursor, then the
effect, if any, on the position or state of that cursor is implementor-defined. Any program whose effect
depends on that position is erroneous.

A working table is a table resulting from the opening of a cursor. Whether opening a cursor results in
creation of a working base table or a working viewed table is implementor-defined. Any program whose
effect depends on this distinction is erroneous.

Each row of a working viewed table is derived only when the cursor is positioned on that row.

A working base table is created when the cursor is opened and destroyed when the cursor is closed.

4.13 Statements

An <SQL statement> specifies a database operation or a cursor operation, or declares a cursor. A
<select statement> fetches values from a table. An <insert statement> inserts rows into a table. An
<update statement: searched> or <update statement: positioned> updates the values in rows of a table.
A <delete statement: searched> or <delete statement: positioned> deletes rows of a table.

4.14 Embedded syntax

An Ada/SQL program is an application program that consists of Ada programming language text and
Ada/SQL text. The Ada programming language text shall conform to the requirements of the standard
Ada programming language. The Ada/SQL text, consisting of one or more <SQL statement>s as
defined in this standard, shall also conform to the requirements of the standard Ada programming
language, when taken with the program environment and the effective Ada declarations. This allows
database applications to be expressed in pure Ada, with the <SQL statement>s embedded directly in an
application program.

Database Language Ada/SQL
16

L I I

UNCLASSIFIED

4.15 Prvieges

A pte authorizes a gven category of <action> to be performed on a specified table or view by a
specified <authorization identifier>. The <action>s that can be specified are INSERT, DELETE,
SELEC, and UPDATE.

An <authorization identifier> is specified for each <schema package> declaring database tables or
views, and is implicit for each execution of an Ada/SQL program. The association of an <authorization
identifier> with a particular execution of an Ada/SQL program is implementor-defined. The effect of a
program, particularly with respect to privileges, may vary from implementation to implementation,
depending on how the <authorization identifier> is associated with a program execution.

All tables, views, and privileges declared in <schema package>s with the same <authorization
identifier> are part of the same <schema>, which is also considered to have that <authorization
identifier>. The <authorization identifier> of a <schema> is the "owner" of all tables and views
defined in that <schema>.

bIbles and views are designated by <table name>s. A <table name> consists of an <authorization
identifier> and a <table identifier>. The <authorization identifier> identifies the <schema> in which
the table or view designated by the <table name> was defined. Tables and views defined in different
<schema>s can have the same <table identifier>.

If a reference to a <table name> within a <schema> does not explicitly contain an <authorization
identifier>, then the <authorization identifier> of the containing <schema> is specified by default. If a
reference to a <table name> within an <SQL statement> does not explicitly contain an <authorization
identifier>, then exactly one of the <schema>s referenced from the compilation unit containing the
<SQL statement> shall declare a table with the identifier used in the <table name>, and the <authori-
zation identifier> of that <schema> is specified by default.

The <authorization identifier> of a <schema> has all privileges on the tables and views defined in that
<schema>.

A <schema> with a given <authorization identifier> may contain <privilege definition>s that grant
privileges to other <authorization identifler>s. The granted privileges may apply to tables and views
defined in the current <schema>, or they may be privileges that were granted to the given <authoriza-
tion identifier> by other <schema>s. The WITILGRANTOPTION clause of a <privilege
definition> specifies whether the recipient of a privilege may grant it to others.

The <authorization identifier> implicitly associated with each execution of an Ada/SQL program shall
have the privileges specified for each <SOL statement> executed by the program; otherwise, an excep-
tion is raised for an attempt to execute an <SOL statement> for which the required privileges are lack-
ing.

4.16 TranstIons

A transaction is a sequence of operations, including database operations, that is atomic with respect to

recovery and concurrency. A transaction is initiated when a program executes an <SQL statement> and
no transaction is currently active. All tasks within the same program participate in the same transaction.

Concepts
17

UNCLASSIFED

A transaction is terminated by a <commit statement>, a <rollback statement>, an <exit database
statement>, or program termination. A transaction terminated by an <exit database statement> or
program termination is terminated as if a <rollback statement> had been executed. If a transaction is
terminated by a <commit statement>, then all changes made to the database by that transaction are
made accessible to all concurrent transactions. If a transaction is terminated by a <rollback state-
ment>, then all changes made to the database by that transaction are canceled. Committed changes
cannot be canceled. Changes made to the database by a transaction can be perceived by that transac-
tion, but until that transaction terminates with a <commit statement> they cannot be perceived by other
transactions.

The execution of concurrent transactions is guaranteed to be serializable. A serializable execution is
defined to be an execution of the operations of concurrently executing transactions that produces the
same effect as some serial execution of those same transactions. A serial execution is one in which each
transaction executes to completion before the next transaction begins.

The execution of an <SQL statement> within a transaction has no effect on the database other than the
effect stated in the General Rules for that <SQL statement>. Together with serializable execution, this
implies that all read operations are reproducible within a transaction, except for changes explicitly made
by the transaction itself.

Database Language Ada/SQL
18

UNCLASSIFIED

5. Common elements

5.1 <character>

Function

Define the terminal symbols of the language and the elements of strings.

Format

<character> -:-
<digit> I <letter> ! <special character>

<digit> ::-
0111213141516171819

<letter> ::-
<upper case letter> j <lower case letter>

<upper case letter> ::-AIBICIDIEIFIGIHIIIJIKILIM
INIOIPIQIRISITIUIVIWIXIYIX

<lower case letter> ::-
alblcIdlelflglhlilj IklIlm

<special character> ::-" # & I() 0 + ,-. :<- >-I$% ? @["
I <space>

Effective Ada Declarations

None.

Example

Not applicable.

Syntax Rules

1) With respect to the format of <special character>: The list of <special character>s on the first line
is to be read as if a BNF "J" were to appear between each pair of <special character>s; the "J"s are
omitted for clarity. The "I" <special character> on the first line is to be read as itself, not a BNF
metasymbol. The "I" character on the second line is the BNF "1" metasymbol.

General Rules

None.

Common elements
19

UNCLASSIFIED

Notes

1) Ada/SQL <character>s conform to ANSI SQL <character>s. The correspondence between
Ada/SQL rules and ANSI SQL rules is as follows:

IANSI SQL Ada/SQL See Notes
SR1-SR2 SR1 2

2) Ada/SQL <special character>s are explicitly specified, to be the same as Ada's. The <special
character>s specified are in full compliance with ANSI SQL SR1 and SR2.

Database Language Ada/SQL
20

UNCLASSEF13ED

5.2 (literal)

Function

Specify a nonnull value.

Format

<literal> :
<character string literal>
I<numeric literal>
I<enumeration literal>

<character string literal>:-

<character representation> ..

<character
representation>

:

<nonquote character>
I<quote representation>

<nonquote character> ::- <character>

<quote representation>:-"

<numeric literal> ::-
<integer literal>
I<floating point literal>

<integer literal> ::-
<integer> [<exponent>]
I<base> # <based integer> #1[<exponent>]

<floating point literal>:-
<integer> . <integer> [<exponent>]
<base> # <based integer> . <based integer> # f<exponent>

<integer> ::-
<digit> [{ [<underscore>] <digit>}.]

<exponent> ::-
E [+]I <integer>
E E- <integer>

<base> ::- <integer>

<based integer> ::-
<extended digit> f <underscore> J<extended digit>} .J

<extended digit>:-
<digit>

C Common elements
21

UNCLASSIFIED

I <letter>

<enumeration literal> ::-
<library package name>. ADA.SQL . <simple enumeration literal>

I <library package name>. <simple enumeration literal>
I <simple enumeration literal>

<simple enumeration literal> ::-
<program identifier>

I <character literal>

<character literal> ::-
' <character> '

Effective Ada Declaradons

None.

Example

.Message of the day:"
-- null character string; not legal in Ada/SQL

= " ' A" """" -- three string literals of length 1
"Characters such as $, %, and) are allowed in string literals"

12 0 1E6 123456 -- integer literals
12.0 0.0 0.456 3.1415926 -- floating point literals
1.34E-12 1.0E+6 -- floating point literals with exponent

2#1111_1111# 16#FF# 016#OFFI -- integer literals of value 256
16#E#E1 2#1110_0000# -- integer literals of value 224
16#F.FF#E+2 2#1.1111_111i111#El1 -- floating point literals of

-- value 4095.0

PHONE PACKAGE.ADA SQL. '0' -- user-defined enumeration literals (assuming
'0' -- definitions shown below)
STANDARD.TRUE -- predefined enumeration literals
TRUE

The declaration of PHONE-PACKAGE might be:

package PHONzEPACKAGE is
package ADA-SOL Is

type PHONE-NUMBERCHARACTER Is new CHARACTER range '0' .. '9,;
end ADA SQL;

end PHONE-PACKAGE;

Syntax Rules

1) A <nonquote character> shall not contain the double quote mark character (").

Database Language Ada/SQL
22

UNCLASSIFE

2) The data type of a <character string literal> is some character string data type which, as a conse-
quence of other Syntax Rules, is determinable solely from the context in which the <character
suring litera> appears. If a <character string literal> is contained in an <Ads type qualification>,
then its subtype is that denoted by the <type mark> of the <Ada type qualification>; otherwise, its
subtype is the same as its data type. Ada visibility rules apply to the characters within a <character
string literal>. The length of a <character string literal> is the number of <character
representatlon>s that it contains. Each <quote representation> in a <character string literal>
represents a single quotation mark character in both the value and the length of the <character
string literal>. Spaces are significant <character representation>s within <character string
literal>s; they are shown in the BNF only to delimit notational elements.

3) Spaces shall not appear within the text of a <numeric literal>; they are shown in the BNF only to
delimit notational elements.

4) The letter E of the <exponent>, if any, can be written either in lower case or in upper case, with the
same meaning. An <exponent> contained in an <integer literal> shall not contain a minus sign.

5) A <base> must be at least two and at most sixteen. The only <letter>s allowed as <extended
digit>s are the letters A through F, representing the digits ten through fifteen. A <letter> in a
<based integer> can be written either in lower case or in upper case, with the same meaning. The
value of each <extended digit> within a <numeric literal> must be less than the <base> of that
<numeric literal>.

6) Arithmetic on <integer literal>s (and integer <named number>s) is performed without regard to
the constraints of any particular data type, as if they were of a universal integer data type. When
interpretation as a value of a specific integer data type is required by the context, an <integer
literal> or an otherwise untyped expression of <integer literal>s and/or integer <named number>s
is taken to be of that data type.

7) Arithmetic on <floating point literal>s (and floating point <named number>s) is performed
without regard to the constraints of any particular data type, as if they were of a universal floating
point data type. When interpretation as a value of a specific floating point data type is required by
the context, a <floating point literal> or an otherwise untyped expression of <floating point
literal>s and/or floating point <named number>s is taken to be of that data type. (Universal float-
ing point expressions may also contain <integer literal>s and integer <named number>s in certain
contexts; see 5.6, <value specification>, and 5.9, <value expression>.)

8) A <character literal> shall consist of exactly one <character> between two apostrophes; the extra
spaces are shown in the BNF only to delimit notational elements.

9) Case:

a) If an <enumeration literal> contains the <library package name> STANDARD, then it
shall be of the form

<library package name> . <simple enumeration literal>

and the same <simple enumeration literal> shall be declared within at least one effective

Common elements
23

UNCLASSIFIED

<enumeration type> within the STANDARD Ada/SQL predefined environment. Let the set
of effective <enumeration type>s containing the same <simple enumeration literal> be
called the reevant <enumeradon Oyp>s.

b) If an <enumeration literal> contains a <library package name> denoting a library package

that is part of the Ada/SQL predefined environment, then it shall be of the form

<library package name> . <simple enumeration literal>

and the same <simple enumeration literal> shall be declared within at least one effective
<enumeration type> within that library package. Let the set of effective <enumeration
type>s containing the same <simple enumeration literal> be called the relevant <enumera-
don lype>s.

c) If an <enumeration literal> contains a <library package name> denoting a library package

that is not part of the Ada/SQL predefined environment, then it shall be of the form

<library package name> .ADA.SQL . <simple enumeration literal>

and the same <simple enumeration literal> shall be declared within at least one <enumera-
tion type> within the ADA.SQL nested package of that library package. Let the set of
<enumeration type>s containing the same <simple enumeration literal> be called the
relevant <emueraon type>s.

d) If an <enumeration literal> is of the form

<simple enumeration literal>

then the same <simple enumeration literal> shall be declared within at least one of the fol-
lowing:

an effective <enumeration type> within the STANDARD Ada/SQL predefined environ-
ment, and/or

one or more <enumeration type>s contained within any innermost package denoted by a
<package name> contained in a <use clause> that applies to the <schema package body>
or <Ada/SQL DML unit> containing the <enumeration literal>.

Furthermore, the <simple enumeration literal> shall not be the same as the name of any data
type, subtype, table, <named number>, or variable declared within the STANDARD
Ada/SQL predefined environment or within any innermost package denoted by a <package
name> contained in a <use clause> that applies to the <schema package body> or
<Ada/SQL DML unit> containing the <enumeration literal>. Also, the <simple enumera-
tion literal> shall be directly visible by Ada rules.

Let the set of <enumeration type>s declaring the same <simple enumeration literal> be
called the relevant <enumeraion type>s.

Database Language Ada/SQL
24

UNCLASSUI D

10) The data type of an <enumeration literal> is that declared by one of the relevant <enumeration
type>s. Where there is more than one relevant <enumeration type>, the one selected is that
required by other Syntax Rules expressing Ada/SQL's strong typing.

General Rules

1) The value of a <character string literal> is the sequence of <character>s that it contains, with each
<quote representation> representing a single quotation mark <character>.

2) Case:

a) If a <character string literal> is of a constrained character string subtype, then its lower and
upper bounds are given by those of the index subtype of the constrained character string sub-
type. The length of the <character string literal> shall be the same as the upper bound minus
the lower bound, plus one; otherwise, the CONSTRAINT.ERROR exception is raised.

b) If a <character string literal> is of an unconstrained character string subtype, then its lower
bound is given by the lower bound of the index subtype of the unconstrained character string
subtype, and its upper bound is equal to the lower bound, plus the length of the <character
string literal>, minus one. The upper bound shall belong to the index subtype; otherwise, the
CONSTRAINT..ERROR exception is raised.

3) An <underscore> character inserted between adjacent digits of an <integer> or a <based
integer> does not affect its value.

4) Case:

a) If a <numeric literal> does not contain a <base>, then its value is that expressed by the con-
ventional decimal notation (that is, the base is implicitly ten). An <exponent> indicates the
power of ten by which the value of the <numeric literal> without the <exponent> is to be
multiplied to obtain the value of the <numeric literal> with the <exponent>.

b) If a <numeri literal> does contain a <base>, then its value is that expressed by the conven-
tional based notation, except that the <base> and the <exponent>, if any, are in decimal
notation. An <exponent> indicates the power of the <base> by which the value of the
<numeric literal> without the <exponent> is to be multiplied to obtain the value of the
<numeric literal> with the <exponent>.

5) The value of an <integer literal> or an untyped expression of <integer fiteral>s and/or integer
<named number>s, when taken to be of a specific integer data type, shall be exact. The value shall
belong to the data type; otherwise, the CONSTRAINTERROR exception is raised.

6) The value of a <floating point literal> or an untyped expression containing <floating point literal>s
and/or floating point <named number>s, when taken to be of a specific floating point data type,
shall be within the accuracy of that data type. The value shall belong to the data type; otherwise, the
CONSTRAINT..ERROR exception is raised.

C Common elements
25

UNCLASSIIEKD

7) The value of an <enumeration literal> is that which it denotes within its data type.

Notes

1) Ada/SQL <literal>s conform to ANSI SQL <literal>s. The correspondence between Ada/SQL
rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
SRI SRI 2
SR2 -92 3
SR3 SR3-SRS 4

SR4-SR5 SR6-SR7 5
- SR8-SR10 6

GR1 GRI -

- GR2 7
GR2-GR3 GR3-GR4 8

GR5-GR6 9
GR7 M

2) Ada/SQL uses quotation mark characters for string brackets, as does Ada; ANSI SQL uses apos-
trophes (which they call single quotation marks). Note that Ada/SQL syntax does not permit
<character string lteral>s containing no <character representation>s, even though such null
string literals are permitted in Ada. This is because ANSI SQL also requires at least one <charac-
ter representation> in a <character string literal>.

3) Ada/SQL SR2 expresses one aspect of Ada/SQL's strong typing, consistent with Ada's rules for
string literals.

4) Ada/SQL <numeric literal> syntax complies with that of Ada, differing from the ANSI SQL syn-
tax in the following ways:

a) ANSI SQL allows a leading plus or minus sign; Ada/SQL does not. The value of an
Ada/SQL <numeric literal> can, of course, be negated by putting a minus sign in front of it;
the minus sign is taken to be a monadic operator instead of part of the <numeric literal>.
Ada/SQL is also more restrictive than ANSI SQL on where monaic operators may be used
(see 5.6, <value specification>, and 5.9, <value expression>).

b) Ada/SQL allows the E for the <exponent> to be written in either upper or lower case; ANSI
SQL requires upper case.

c) An Ada/SQL <integer literal> may contain an <exponent>, subject to certain restrictions.
The ANSI SQL analog, <exact numeric literal>s, may not contain <exponent>s.

Database Language Ada/SQL
26

UNCLASSIFIED

d) An Ada/SQL <floating point literal> containing a radix point (period) must have at least one
digt on each side of the point; the <mantissa> of the ANSI SQL analog, <approximate
numeric literal>, may begin or end with a decimal point.

e) Ada/SQL allows based notation; ANSI SQL only supports base ten.

f) Ada/SQL permits <underscore>s to be used as digit separators; ANSI SQL does not allow
digit separators.

5) Ada/SQL SR6 and SR7 express aspects of Ada/SQL's strong typing, consistent with Ada's implicit
type conversions from types uniersamL.teger and universaLreal.

6) Ada/SQL SR9 basically restates Ada name syntax and visibility considerations for <enumeration
literal>s. It is still necessary to add that a <simple enumeration literal> used without qualification
shall be directly visible by Ada rules, because <use clanse>s may refer to <non Ada/SQL package
name>s, and certain Ada use-clauses do not fall under the purview of Ada/SQL syntax. These ele-
ments may affect the visibility of <simple enumeration literal>s.

7) The determination of lower and upper bounds for Ada/SQL <character string literal>s is that
prescribed by Ada for string literals.

8) Ada/SQL <numeric literal>s are interpreted according to Ada rules, which go beyond those of
ANSI SOL in allowing <underscore>s as digit separators and based notation.

9) Raising CONSTRAINT-ERROR corresponds to the Ada semantics on implicit type conversions.

I

C Common elements
27

UNCLASSIFIE

5.3 <token>

Function

Specify lexical units.

Format

<token>:-
<nondelimiter token> I<delimiter token>

<nondelimiter token>:-
<identifier>
<keyword>
<numeric literal>

<identifier> ::-
<letter> I { I <underscore>]I <letter or digit>}..

<underscore> :-

<letter or digit> ::-
<letter> I <digit>

<database identifier> :-<identifier>

<program identifier> :-<Identifier>

<keyword> ::-
<Ada reserved word>
<SQL keyword>
I <Ada/SQL statement name>
1 <Ada/SQL reserved word>

<Ada reserved word> -:-

abort Ideclare Ifor Inew Iraise Itask
Iabs Idelay Ifunction Inot Irange Iterminate
Iaccept Idelta Imail record Ithen
Iaccess Idigits Igeneric Iran type
Iall Ido Igoto Iof resI
Iand Ior Ireturn ague
Iarray Ielse Iift others Ireverse
at lelsif in lout when
Iend I i select Iwhile
Ibegin Ientry Ipackage Iseparate Iwith
1body Iexception limilted Iprap. subtype
Iexit Iloop Iprivate z or
ICaseo procedure
Iconstant Inod

Database Language Ada/SQL
28

(SQL key word)
ALL I END LANGUAGE SCEA
AND I ESCAPE LIKE SECTION
ANY wEXEC SELECT
AS I EXISTS MAX SET
ASC 1MIN SMALLINT
AUTHORIZATION FETCH MODULE SOME
AVG FLOAT SOL

FOR NOT SOLCODE
I BEGIN FORTRAN NULL SOLERROR
I BETWEEN FOUND NUMERIC SUM

BY FROM
OF I TABLE

CHAR IGO ION ITO
p CHARACTER I GOTO OPEN
CHE I GRANT OPTION UNION
CLOSE I GROUP OR UNIQUE
COBOL ORDER UPDATE
COMMIT I HAVING USER
CONTINUE PASCAL
COUNT IN PLI VALUES
CREATE INDICATOR PRECISION VIEW
CURRENT INSERT PRIVILEGES
CURSOR INT PROCEDURE WHENEVER

INTEGER PUBLIC WHERE
DEC INTO WITH
DECIMAL IS I REAL WORK
DECLARE I ROLLBACK
DELETE
DISC
DISTINCT
DOUBLE

(Ada/SQL statement name) -
CLOSE I EXIT-DATABASE I INSERT SELEC
CONMITWORK I INSERT_INTO SELEC_ALL
CONSTRAINTS I FETCH J INTO SELEC DISTINCT
CREATEVIEW SELECTALL

I GRANT I OPEN SELECTDISTINCT
DECLAR I OPENDATABASE
DELETE I UPDATE
DELETEFROM I ROLLBACKWORK

(Ada/SQL reserved word>
ALLPRIVILEGES J DESC MAX SOME
ALLL I MAX ALL SUM
ANY J ENABLED MAX DISTINCT SUMALL
ASC I EQ MIN SUM DISTINCT
AVG I EXISTS MIN ALL
AVG ALL MIN-DISTINCT UNION
AVG DISTINCT I IDENTIFIER UNION ALL

I INDICATOR J NE UNIQUE

(I' Clmmon elem nts
29

UNIAWIFIED

BETW EEN IIS IN NOT-IN USER
I ISNOT_NULL I NOTNULL

CONVERT_TO J IS-NULL I NULVALU I VALUES
ICOUNT

COUNTALL I LIKE J PUBLIC
COUNTDISTINCT

<delimiter token> ::-
<character string literal>

J <character literal>1, 1(I1) I< I> 1. 1: I* I+ 1-
I/ I>-I<-I& i' i; I->I..I:-I<>

<separator> ::-
(<comment> I <space> I <newline> <format effector> }.

<comment> ::-
- [<comment character>...] <newline>

<comment character> ::-
<character> I <horizontal tabulation>

<horizontal tabulation> ::-
ASCII horizontal tabulation character

<newline> ::-
mlementor-de fned end-of-line indicator

<space> ::-
ASCII space character

<format effector> ::-
<horizontal tabulation>

I ASCII vertical tabulation character
I ASCII carriage return character
I ASCII line feed character
I ASCI1form feed character

Effective Ada Declarations

see sections relevant to various key/reserved words

Example

NAME name9 LAST NAME FirstName -- <identifier>s

TOOLONG_FOR_A_DATABASEIDENTIFIER

-- (coment)5s:
------------ the first two hyphens start the comment

COMMITWORK;--spaces are not necessary around "--" to start comment

Syntax Rles

Database Language Ada/SQL
30

UN~CLASJIED

1) A <token>, other than a <character string literal> or a space <character literal>, shall not
include a <space>.

2) Any <token> may be followed by a <separator>. A <nondelimiter token> shall be followed by a
<delimiter token> or a <separator>. If the syntax does not allow a <nondeliniter token> to be
followed by a <delimiter token>, then that <nondeimiter token> shall be followed by a <separa-
tor>.

3) A <space> within a <comment>, a <character string literal>, or a space <character literal> is
not a <separator>. The spaces shown within the definition of <comment> are not required; they
are shown in the BNF only to delimit notational elements. <horizontal tabulation> within a <com-
ment> is not a <separator>.

4) <newline> is an implementor-defined end-of-line indicator. If, for a given implementation, the end
of a line is signified by one or more characters, then these characters shall be <format effector>s
other than <horizontal tabulation>. In any case, a sequence of one or more <format effector>s
other than <horizontal tabulation> shall cause at least one <newline>.

5) The single special characters shown for <delimiter token> are not <delimiter token>s when part
of a two-character <delimiter token>, or contained within a <comment>, <character string
literal>, <character literal>, or <numeric literal>. The two-character sequences shown for <del-
imiter token> are not <delimiter token>s when contained within a <comment> or <character
string literal>.

6) All characters of an <identifier> are significant, including any <underscore> character inserted
between a <letter> or <digit> and an adjacent <letter> or <digit>. <identifier>s differing only
in the use of corresponding upper and lower case letters are considered as the same. No <space> is
allowed within an identifier; spaces are shown in the BNF only to delimit notational components.

7) A <database identifier> shall not consist of more than 18 <character>s.

8) A <database identifier> shall not be identical to a <key word>; a <program identifier> shall not
be identical to an <Ada reserved word>, an <Ada/SQL statement name>, or an <Ada/SQL
reserved word>.

9) Let the term potential homograph be defined, in terms of Ada visibility rules, for a specific Ada

identifier at a specific point in an Ada compilation unit, as follows: An identifier is a potential
homograph if:

a) A declaration of that identifier which does not allow overloading is directly visible, or

b) A declaration of that identifier which does not allow overloading is hidden, jr

c) A declaration of that identifier which does not allow overloading is potentially visible, whether
actually made directly visible or not.

JC Common elements
31

, I.dm mmmmm r asi m I. .

UNCLASSIFIED

10) At the point of its use, a <database identifier> shall not be a potential homograph.

11) At the point of its use, the appropriate declaration of a <program identifier>, as required by other
Syntax Rules, shall be visible according to Ada visibility rules.

12) An <Ada/SQL statement name>, other than OPEN, CLOSE, or DELETE, shall not be used
within an <Ada/SQL compilation unit>, except as explicitly prescribed by the syntax of this stan-
dard. Furthermore, at the point of its use, an <Ada/SQL statement name> shall not be a potential
homograph.

13) At the point of its use, an <Ada/SQL reserved word> shall not be a potential homograph.

14) At the point of its use in a <correlation name declaration>, the identifier a.LCORRELATION or
t..CORRELAI ON, where "a" represents an <authorization identifier> and "t" represents a
<table identifier>, shall not be a potential homograph.

General Rules

None.

Notes

1) Ada/SQL <token>s conform to ANSI SQL <token>s. The correspondence between Ada/SQL
rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
SRI SRI 2
SR2 SR2

- SR3-SR5 3

- SR6 4

SR3 SR7 5
SR4 SR8 6

- SR9-SR1O 7
- SR11 8
- SR12 9
- SR13 10
- SR14 11

2) ANSI SQL does not have <character literal>s.

3) Ada/SQL SR3, SR4, and SR5 correspond to Ada rules for tokens.

Database Language Ada/SQL
32

UNCLASSIFIED

4) ANSI SQL only allows upper case within <identifier>s; Ada/SQL allows either upper or lower
case, but ignores case in determining the meaning of an <identifier>.

5) ANSI SQL restricts all <identifier>s to no more than 18 characters. To maintain compatibility,
Ada/SQL likewise restricts names of database objects, <database identifier>s, to 18 characters.
No maximum length is placed on names of program objects, <program identifier>s, in accordance
with Ada philosophy.

6) <database identifier>s and <program identifier>s must be distinct from Ada reserved word>s to
comply with Ada syntax, and are required to be distinct from <Ada/SQL statement name>s and
<Ada/SQL reserved word>s to facilitate parsing of Ada/SQL. <database identifier>s, which
name database objects, are required to be different from <SQL key word>s to retain compatibility
with ANSI SQL. <program identifier>s, which name program objects, may be identical with
<SQL key word>s, providing they are also different from the <key word>s in the other categories.

The restrictions of Ada/SQL SR8 would prohibit the use of any type COUNT, declared in package
TEXT-O and generic package DIRECTIO, within Ada/SQL statements. At this time, neither
TEXT-1O nor DIRECT-1O is part of the Ada/SQL predefined environment, so that the COUNT
types are not available to Ada/SQL statements anyway. A later version of this standard may include
TEXT-O and/or DIRECT-1O in the Ada/SQL predefined environment, at which time some
allowance would have to be made for COUNT.

7) In a runtime system, <database identifier>s are the names of functions which are made directly visi-
ble with a use clause. It would not be possible to make them directly visible, however, if they were
potential homographs.

8) The "other Syntax Rules" referred to in Ada/SQL SR11 define how a <program identifier> must be
declared. The purpose of SR11 is to ensure that those declarations will not be hidden or otherwise
not directly visible due to the effects of other Ada declarations

9) The restriction on the use of <Ada/SQL statement name>s is placed by Ada/SQL SR12 to simplify
the task of writing language processors for Ada/SQL. A language processor can ignore Ada con-
structs not part of the Ada/SQL language, merely scanning source text for each <Ada/SQL state-
ment name>. Later versions of this standard may lift this restriction, which means that language
processors would have to search more carefully for Ada/SQL statements. OPEN, CLOSE, and
DELETE are allowed non-Ada/SQL uses because of their frequent programming usage, including
in the predefined packages for Ada input-output. For these <key word>s, therefore, Ada/SQL
language processors must already determine whether or not they are used as <Ada/SQL statement
name>s.

In a runtime system, <Ada/SQL statement name>s are the names of subprograms which are made
directly visible with a use clause. It would not be possible to make them directly visible, however, if
they were potential homographs. OPEN, CLOSE, and DELETE are declared as procedures in the
predefined Ada input-output packages, hence, overloading is allowed for the names, and they are
not potential homographs.

10) In a runtime system, <Ada/SQL reserved word>s are the names of functions which are made
directly visible with a use clause. It would not be possible to make them directly visible, however, if
they were potential homographs.

Common elements
33

UNCLASSIFIED

Note that package TEXT..O and generic package DIRECTJO declare types named COUNT. If
TEXT-JO or a package instantiated from DJRECT.O is named in an Ada use clause of an
<Ada/SQL compilation unit>, then COUNT, which is also an <Ada/SQL reserved word> for use
in COUNT ('*'), is a potential homograph. For this reason, Ada/SQL provides COUNT.ALL as
a synonym which may be used in contexts where COUNT is prohibited.

Release I implementations do not support the COUNT-ALL synonym for COUNT.

11) In a runtime system, the a-tCORRELATION or tCORRELATION identifiers are package
names which are made directly visible with a use clause. It would not be possible to make them
directly visible, however, if they were potential homographs.

Database Language Ada/SQL
34

UNCLASSIFIE

5.4 Names

FunctIon

Specify names.

Format

<table name> :-f<authorization identifier> .] <table identifier>

<authorization identifier> ::- <database identifier>

<table identifier> ::- <database identifier>

<column name> ::- <database identifier>

<correlation name> ::- <database identifier>

<cursor name> ::- <variable name>

<package name> ::-
<unit simple name>
<unit simple name> . ADA-.SOL

I ADA-.SQL
I<non Ada/SQL package name>

<non Ada/SQL package name> ::- a package name, the first identifier of which
is a not a <library package namne>

<library package name> ::- <program identifier>

<non Ada/SQL library unit name> ::- the name of an Ada library unit which
satfies the rules given in
Syntax Rule I of 6.1.4

<ppickage identifier> :.:- <program identifier>

<type mark>:-
<library package name> . ADA-.SQL . <type identifier>
I<library package name> . <type identifier>
<type identifier>

<type identifier> ::- <program identifier>

<program object name>::
<variable name>
<named number name>

<variable name> :
<library package nalme> . <simple variable name>

I ADA-.SQL . <simple variable name>

I;. Common elements

35

UNCLASSIFIED

<simple variable name>

<simple variable name> ::- <program identifier>

<named number name> ::-
<hbrary package name>. ADA..SQL. <named number>

I <library package name>. <named number>
I <named number>

Effective Ada Declations

In the DATABASE predefined package:

type USERAUTHORIZATIONIDENTIFIER Is new STANDARD.STRING (1 18);

In the SCHEMA.DEFINITION predefined package:

type IDENTIFIER Is private;

For an <authorization identifier> a:

type AUTHORIZATIONIDENTIFIERa is private;

function a return AUTHORIZATION IDENTIFIERa;

function a return AUTHORIZATIONIDENTIFIERLIST;

type TABLENAME is private;

For a table t: - t functions are declared if and only if all <schema
- package>s referenced by the <Ada/SQL compilation unit>
- declare exactly one table named t

function t return TABLENAME;

function t return FROH CLAUSE;

type TABLENAME t is private;

function t return TABLENAME-t;

type COLUM_NAMEt Is private;

For a table t with <authorization identifier> a (all other tables with
<authorization identifier> a are similarly included in the record type
declarations):

type TABLE NAMEUNTYPEDa Is
record

t TABLENAME;

Database Language Ada/SQL
36

UNCASSIFIHE

end recordi

function a return TABLE tAMEUNTYPD_a;

type TABLE.NAME TYPED a I s
record

t TABLENAM t;

end record;

function a return TABLE NAMETYPED_a;

type FROM CLAUSE a Is
record

t FROM_CLAUSE;

end record;

function a return FROMCLAUSE a;

For a data type ct, used as the data type of a column within table t:

type COLUMNNAME_t_ct is private;

For a column of data type ct, with <column name> c, declared in table t:

function c return COLUMN_NAME t;

function c return COLUMN_NAME_t _ct;

type CURSOR_NAME is private;

NULL_CURSORNAME : constant CURSOR NAME;

Example

examples of names are used in various syntactic constructs containing them

Syntax Rules

1) A <table name> identifies a named table. References to <table name>s in this section also pertain
to a <table name> represented in a <table name with optional column list> or an <underscored
table name>.

2) If a <table name> does not contain an <authorization identifier>, then:

a) If the <table name> is contained in a <schema>, then the <authorization identifier>
specified as the <schema authorization identifier> of the <schema> is implicit.

Common elements
J" 37

UNCLASSIFIED

b) U the <table name> is not contained in a <schema>, then exactly one distinct <library pack-
age name> contained in the <Ada/SQL compilation unit> containing the <table name>
shall be the name of a <schema package> declaring a table with the <table identifier> used
in the <table name>, and the <authorization identifier> of that <schema package> is impli-
cit.

3) wo <table name>s are equal if and only if they have the same <table identifier> and the same
<authorization identifier>, regardless of whether the <authorization identifier>s are implicit or
explicit.

4) A <table name> is declared in a <table definition>.

5) An <Ada/SQL compilation unit> containing a <table name> shall also contain a <library package
name> that is the name of a <schema package> containing a <table definition> declaring the
<table name>, unless the <Ada/SQL compilation unit> is part of such a <schema package>
itself.

6) An <authorization identifier> represents an authorization identifier.

7) A <database identifier> is declared as a <correlation name> for a particular table. The <correla-
tion name> is associated with a particular instance of that table for a particular scope. The scope of
a <correlation name> is either a <select statement>, <subquery>, or <query specification> (see
5.20, "<from clause>"). Scopes way be nested. in different scopes, the same <correlation name>
may be associated with different instances of the same table.

8) A <column name> identifies a named column. An <identifier> is defined as a <column name>
by a <table definition>. An <Ada/SOL compilation unit> containing a <table name> shall also
contain a <library package name> that is the name of a <schema package> containing a <table
definition> declaring the <column name>, unless the <Ada/SQL compilation unit> is part of
such a <schema package> itself.

9) A <cursor name> identifies a cursor. A <cursor name> shall be the same as a <variable name>
declared of type CURSOR.NAME.

10) A <package name> denotes one of the packages described in this specification, in accordance with
Ada rules. Section 6.1.4 contains restrictions on the forms of <package name>s allowed in various
contexts. A <non Ada/SQL package name> is the name of a package containing program text that
is not relevant to Ada/SQL.

11) A <library package name> denotes an Ada library package, in accordance with Ada rules. A
<non Ada/SQL library unit name> is the name of a library unit containing program text that is not
relevant to Ada/SQL. A <package identifier> is declared as the name of a package.

12) A <type mark> denotes a data type or subtype, in accordance with Ada rules. A <type identifier>
is declared as the name of a data type or subtype.

Database Language Ada/SQL
38

UNCLASSIFIED

13) A <program object name> is the name of a variable (<variable name>) or named number
(<named number name>), in accordance with Ada rules. A <simple variable name> is declared
as the name of a variable.

General Rules

None.

Notes

1) Type DATABASE.USER.AUTHORIZAIIONJDENTFIER is used as the data type of the
<keyword> USER.

2) Type IDENTIFIER refers to an <authorization identifier>, but is not named
AUTHORIZAIIONJDENTIFIER due to the syntax of <schema authorization clause>s. Its only
use is in <authorization package>s and <schema authorization clause>s. No functions returning
type IDENTIFIER are shown here as being effectively declared; instantiating
AUTHORIZATIONJIDENTIFIER within an <authorization package> performs the effective
declaration.

3) The <table name> a.t effectively calls one of the a functions to return a value of a record type; then
selects the t component of this value, which is the appropriately typed value representing the <table
name>.

4) Ada/SQL names conform to ANSI SQL names. The correspondence between Ada/SQL rules and
ANSI SOL rules is as follows:

ANSI SQL Ada/SQL See Notes
SR1 SR1 5
SR2 SR2 6
SR3 SR3 -
SR4 SR4 7
SR5 SR 8
SR6 SR6 -
SR7 SR7 9
SR8 SR8 10
SR9 -1

SR10 SR9 12
SR11-SR12 - 11

- SR1O-SR13 13

5) ANSI SOL <table name> syntax has been mirrored in Ada/SQL for most contexts. There are
several, noted in Ada/SQL SR1, however, where Ada syntax forces modifications to ANSI SQL
syntax for Ada/SQL.

(39 Common elements~39

UNCLASSUI)D

6) ANSI SOL and Ada/SQL identically interpret <table name>s contained in a <schema>. For
<table name>s not contained in a <schema>, however, ANSI SQL uses the <authorization
identifier> of the containing <module>, if the <table name> does not contain an <authorization
identifier>. Since Ada/SQL does not have a <module> concept, this approach cannot be used.
Instead, Ada/SQL requires that a <table name> without an <authorization identifier> unambigu-
ously denote a table.

7) Tables are declared by both <table definition>s and <view definition>s in ANSI SOL. Ada/SQL
requires a <table definition> for both base tables and viewed tables, so every <table name> is
declared in a <table definition>.

8) Ada/SQL SR5 relates <table name> references to the <schema package> that declares the <table
name>. Note that a <schema> may be divided up into several <schema package>s, in accordance
with Ada separate compilation philosophy, and that an <Ada/SQL compilation unit> may refer-
ence only selected <schema package>s from a <schema>, using accepted modularity concepts.

9) ANSI SOL <correlation name>s are defined by their appearance in a <table reference>. In order
to get similar Ada/SQL syntax, it is necessary to predefine <correlation name>s with <correlation
name declaration>s. Each <correlation name> is associated with a particular table by a <correla-
tion name declaration>.

10) In Ada/SQL, a <table definition> is required for both base tables and viewed tables. Hence, a
<column name> is defined by its containing <table definition>s. In ANSI SOL, a <column
name> can be defined in either a <table definition> or a <view definition>.

11) <module name>s, <procedure name>s, and <parameter name>s are not relevant to Ada/SQL.

12) In ANSI SOL, <cursor name>s are totally contained within a <module>; there is no need to link
them to program variables. In Ada/SOL, program variables are used to represent cursors, and
these program variables are strongly typed as CURSOR.NAMEs.

13) Various Ada constructs that are not relevant to ANSI SOL are described in Ada/SQL SR10-SR13.

Database Language Ada/SQL
40

UNCL SSIFED

5.5 <data type>

Function

Specify a subtype to be used in declaring a data type.

Format

<data type> ::-
<character string type>

I <integer type>
I <noating point type>
<enumeration type>

Effective Ada Declarations

None.

xample

type LAST_NANE Is array (1 .. 10) of CHARACTER;
-- <character string type>

type EMPLOYEECOUNT Is range 1 .. 10000;
-- <integer type>

type EMPLOYEESALARY is digits 7 range 0.00 .. 99_999.99;
-- <floating point type)

type SUIT is (CLUBS , DIAMONDS , HEARTS , SPADES);

-- <enumeration type>

Syntax Rules

None.

General Rules

None.

Notes

1) The correspondence between Ada/SQL and ANSI SQL <data type>s is as follows:

Common elements

41

UNCLASSIFIED

SS Ad/SQL See Notes
<character string type> <character string type> 2
<exact numeric type> <itege type> 3

<approximate numeric type> <floating point type> 4
-<enumeration type> 5

2) Ada/SQL <character string type>s are analogous to ANSI SOL <character string type> a. Thie
components of Ada/SQL <character string type>. can be constrained to ailow only certain
<character>s. Although an Ada/SQL <character string type> may be unconstrained, allowing
different strings of the same data type to be of different lengths, each column declared to be of that
data type must be of a fixed, specified length.

3) Ada/SQL <integer type>. are analogous to a subset of ANSI SQL <exact numeric type>., namely
those with a <scale> of 0. Also, a <range constraint> may be placed on an Ada/SQL <integer
type>. ANSI SQL <exact numeric type>. have a fixed decimal point location, indicated by their
<scale>. It is therefore tempting to map them into Ada fixed point types. Such a mapping is not
necessarily correct, however, because ANSI SQL <exact numeric type>s represent exact decimal
values, while Ada fixed point types will represent approximations to decimal values unless the
environment supports Ada length clauses for their SMALL attribute. Since not all environments
support this, it was felt best to avoid defining a mapping that might appear intuitive to users and yet
allow computation errors to occur. A later version of this standard may provide a way to map all
ANSI SQL <exact numeric type>s to Ada and Ada/SQL, most likely as one or more generic pack-
ages providing an internal representation and all required operations on <exact numeric type>s. In
the meantime, most computations for which <exact numeric type>. appear suited can instead be
performed using <floating point type>s of sufficient accuracy

4) Ada/SQL <floating point type>. are analogous to ANSI SQL <Approximate numeric type>s,
except that ANSI SQL expresses precision in terms of bits (binary digits), while Ada/SQL
expresses accuracy in terms to decimal digits. Also, a <range constraint> may be placed on an
Ada/SQL <floating point type>.

5) ANSI SQL has no analog of Ada/SQL's <enumeration type>s. Enuimeration values may be
represented in an SQL database as, for example, integers, but the ability to name such values with
Ada/SQL <enumeration type>s is of value to software engineering.

Database Language Ada/SQL
42

UNCLASSIFIED

5.5.1 (character sUn type>

Function

Specify a character string subtype.

Format

<character string type> ::-
<unconstrained character string definition>
<constrained character string definition>

<unconstrained character string definition> ::-
aray (<index subtype definition>) of <component subtype indication>

<constrained character string definition> ::-
array <index constraint> of <component subtype indication>

<index subtype definition> ::-
<type mark> range <>

<component subtype indication> ::- <subtype indication>

<index constraint> ::- (<discrete range>)

<discrete range> ::-
<discrete subtype indication>

I <range>

<discrete subtype indication> ::- <subtype indication>

Effective Ads Declarations

In the DATABASE predefined package:

MAX_ CHARACTERS : constant :- implemeation..deflned;
- maximum number of characters in a <character string type> supported
- by the Ada/SQL environment

Example

* type UNCONSTRAINEDNAME Is array C POSITIVE range <>) of CHARACTER;

type LAST-NAME Is array (1 10) of CHARACTER;

type HEX CHARACTER isI ' O f , I I I P 2 ' 3 ' , 4 ' , 5 f 6 ' , 7 ' ,
PSI , '9' 'A' , 8 'B IC' 'DO 'E' , ' ')

type HASH CODEINDEX is range 1 .. 8;

type HASHCODE Is array (HASHCODEINDEX) of REXCHARACTER;

CamMMU elamnts

43

LN1LASSIFIID

Synta Rules

1) The <type mark> of an <index subtype definition> shall denote an integer subtype containing at
least one value within its range.

2) A <component subtype indication> shall denote a character subtype containing at least one value,
with values ordered according to the ASCH collating sequence.

3) The subtype defined by an <index constraint> shall be an integer subtype containing at least one
value but not more than DATABASE.MAXCHARACTERS values within its range.

General Rules

1) A <component subtype indication> or a <discrete subtype indication> defines the same subtype
as does its contained <subtype indication>.

2) Case:

a) A <discrete range> that contains a <discrete subtype indication> defines the same subtype
as does the <discrete subtype indication>.

b) A <discrete range> not containing a <discrete subtype indication> defines a subtype of the
data type of the contained <range>, with lower and upper bounds given by the two contained
<value specification>s, respectively.

3) An <index constraint> defines the same subtype as does its contained <discrete range>.

4) The component subtype of a character string subtype or object declared as a <character string type>
is that defined by the contained <component subtype indication>.

5) Case:

a) The index subtype of a character string data type declared with an <unconstrained character
string definition> is that denoted by the <type mark> of the contained <index subtype
definition>. The compound delimiter <> (called a box) of an <index subtype definition>
stands for an undefined range (different objects of the unconstrained character string data
type need not have the same bounds).

b) The index subtype of a character string data type or object declared with a <constrained char-

acter string definition> is that defined by the contained <discrete range>.

Notes

1) The Format and Rules for the Ada/SQL <character string type> are patterned after the Ada
arrayjtypedefinition, suitably restricted apropos of ANSI SOL capabilities.

Database Language Ada/SQL

44

UNCLASSIFIED

2) The original Ada/SQL definition allowed null index ranges, stating that columns declared of charac-
ter string types with null index ranges would only be permitted to store null values. But such a con-
cept seems so useless that it is simply not allowed in this standard.

3) Release 1 implementations impose a tighter constraint on <component subtype indication> than
does SR2, requiring that it denote a subtype of the predefined STANDARD.CHARACTER type or
a type derived therefrom. Release 1 implementations also do not permit a <component subtype
indication> to contain a <constraint>.

4) The reason SR2 requires that the character values of a component subtype be ordered according to
the ASCII collating sequence is so that character strings will have the same ordering under both
Ada and ANSI SQL semantics.

5) Release 1 implementations do not provide the <named number> DATABASE.MAX_-
CHARACTERS.

6) <range> is the only form of <discrete range> allowed by Release 1 implementations within a
<subtype indication>.

4

C Common elements
45

UNCLASSIFIED

5.5.2 <Integer pe>

Function

Specify an integer subtype.

Format

<integer type> ::-
<range constraint>

Effective Ada Declarations

In the DATABASE predefined package:

MIN_INT : constaut :- implementationdefined;
smallest (most negative) integer value supported by the Ada/SOL
environment

MAXINT : constant :- implementation-defined;
-- largest (most positive) integer value supported by the Ada/SQL
-- environment

Example

type HASHCODEINDEX Is range 1 .. 8;

Syntax Rules

1) The <range constraint> shall have integer bounds, with the lower bound not less than
DATABASE.MJN..T and the upper bound not greater than DATABASE. MAX.JNT.

General Rules

1) The range of values defined by an <integer type> is the same as that defined by the <range con-
straint>.

Notes

1) The Format and Rules for the Ada/SQL <integer type> are patterned after the Ada
integer-type.definition, suitably restricted apropos of ANSI SQL capabilities.

2) Release 1 implementations do not provide the <named number>s DATABASE. MINJINT and
DATABASE .MAXJNT.

Database Language Ada/SQL
46

UNCLASSIFIED

5.5.3 <floating point type>

Function

Specify a floating point subtype.

Format

<floating point type> ::-
<floating point constraint>

<floating point constraint> ::-
<floating accuracy definition> [<range constraint>]

<floating accuracy definition> ::-
digits <value specification>

Effective Ada Declarations

In the DATABASE predefined package:

MAXDIGITS : constant :- implementation-defined;
-- maximum number of digits that can be specified in a
-- (floating accuracy definition>

DOUBLE PRECISIONSAFELARGE : constant :- implementation-defined;
-- largest positive floating point number permitted

Example

type EMPLOYEE_SALARY is digits 7 range 0.00 .. 99_999.99;

type MOSTPRECISETYPE Is digits DATABASE.MAXDIGITS;

Syntax Rules

1) The <value specification> shall be of an integer data type, shall be positive (nonzero), and shall not
be greater than DATABASE.MAXJDIGITS.

2) The <value specification> shall not contain a <program object name> other than a <named
number>, an <indicator specification>, an <Ada type conversion>, or a CONVERT-TO opera-
tion.

3) The <range constraint> (if any) shall have floating point bounds.

4) The bounds of the <range constraint> (if any) shall not exceed DATABASE.DOUBLE_-
PRECISION-SAFE-LARGE in absolute value.

Common elements
47

UNCL"SFI D

5) Let B be the integer next above

(DATABASE.MAX.DIGITS * log(10)/log(2)) + 1.

(B is the smallest number of significant bits required in a binary representation of a number with
DATABASE.MAXDIGITS decimal digits, such that the relative precision of the binary form is no
less than that of the decimal form.) DATABASE.DOUBLE&PRECISIONSAFELARGE shall
be no less than

2"*(4*B) - 2"*(3*B).

General Rules

1) Numbers represented in the <floating point type> shall retain at least the number of significant
decimal digits given by the <value specification>.

2) The range of values defined by a <floating point type> !is the same as that defined by the <floating
point constraint>.

3) Case:

a) If a <floating point constraint> contains a <range constraint>, then the range of values
defined by that <floating point constraint> is the same as that defined by the <range con-
straint>.

b) If a <floating point constraint> does not contain a <range constraint>, then:

Case:

i) If the <floating point constraint> is contained within a <full type declaration>, then
the range of values it defines is implementation-dependent, and may be different for
Ada operations and for database operations.

1) An Ada implementation selects a representation to be used for numbers satisfy-
ing the <floating point constraint>, and the range of values is determined by the
representation selected.

2) Likewise, an Ada/SQL implementation selects a representation to be used for
numbers satisfying the <floating point constraint> and the range of values is
determined by the representation selected. Since the representation selected by
the Ada implementation may not be the same as that selected by the Ada/SQL
implementation (database management system), the ranges of values defined may
also differ. In all cases (including the representations selected for integer data
types), the base type of a data type is considered to contain the range of values
determined by the Ada/SQL implementation. Where it is necessary to distin-
guish the range of values selected by an Ada implementation, that range is expli-
citly attributed to the Ada base type.

Database Language Ada/SQL
48

UNCLASSI

3) Let D be the value of the <value specification>. Let B be the integer next above (
D * log(10)/log(2)) + 1. (B is the smallest number of significant bits required in a
binary representation of a number with D decimal digits, such that the relative
precision of the binary form is no less than that of the decimal form.) The range
of values of the base type shall include at least -R..R, where

R - 2"*(4"B) - 2*(3"B).

ii) If the <floating point constraint> is contained within a <subtype indication>, then the
range of values defined by that <floating point constraint> is the same as that denoted
by the <type mark> contained in the <subtype indication>.

4) The accuracy defined by a <floating point constraint> is the value of the contained <value

specification>.

Notes

1) The Format and Rules for the Ada/SQL <floating point type> are patterned after the Ada
floating-poinLconstraint, suitably restricted apropos of ANSI SQL capabilities.

2) Release 1 implementations do not provide the <named number>s DATABASE. MAX-DIGITS

or DATABASE.DOUBLEPRECISIONSAFELARGE.

3) SR2 ensures that the <value specification> is a meaningful static Ada simple-expression, as
required by Ada syntax and semantics.

4) SR4 and SR5 ensure that the range of floating point numbers supported by the database includes the
Ada model numbers for the maximum number of significant digits supported by the database.

5) SDL syntax permits the declaration of a floating point data type only in terms of its accuracy
(minimum number of significant digits), without specifying an allowable range of values. GR3b.i
requires that the range of such a data type must include at least the Ada model numbers for the
declared accuracy

Common elements
49

UNCLASSIFIED

5.5.4 (eumeration type>

Function

Specify an enumeration subtype.

Format

<enumeration type> ::-
(<enumeration literal specification>

[{, <enumeration literal specification> }... 1)

<enumeration literal specification> ::-
<simple enumeration literal>

Effective Ada Declarations

None.

Example

type HEX_ CHARACTER is
(01 , ' ' '2P '3P '4' '51 161 17f,
'81 1 9P 'A' PB' 'C', 101 'Er 'F')

Syntax Rules

1) The <enumeration literal specification>s contained in an <enumeration type> shall be distinct.

2) An <enumeration type> is said to be a character type (or character subype, character data type, as
appropriate)if all of its <simple enumeration literal>s are <character literal>s.

General Rules

1) Each <enumeration literal specification> declares its contained <simple enumeration literal>.
Note that the same <simple enumeration literal> can be declared for several different <enumera-
tion type>s. If an <enumeration literal> occurs in a context that does not otherwise suffice to
determine the data type of the <enumeration literal>, then an <Ada type qualification> is one way
to resolve the ambiguity.

2) Each <simple enumeration literal> yields a different enumeration value. The predefined order rela-
tions between enumeration values follow the order of corresponding positon numbers. The position
number of the value of the first listed <simple enumeration literal> is zero; the position number for
each other <simple enumeration literal> is one more than for its predecessor in the list.

Notes

1) The Format and Rules for the Ada/SQL <enumeration type> are patterned after the Ada
enumeration.type.definition, suitably restricted apropos of ANSI SQL capabilities.

Database Language Ada/SQL
50

UNCLASSIFIED

2) The definition of character type given in SR2 differs from that of Ada, which considers an enumera-
tion type to be a character type if at least one of its enumeration literals is a character literal. The
Ada/SOL definition is used to indicate the allowable components of character strings.

Common elements
51

UNCLASSIFIED

5.5.5 Csubtype Idahidon>

Function

Specify a subtype of a data type.

Format

<subtype indication> ::-
<type mark> [<constraint>

<constraint> ::-
<range constraint> I <index constraint> I <floating point constraint>

Effective Ada Declarations

None.

Example

type HEXCHARACTER is
F 01 Ill1 '2' 13P 141 '5' 1 '61 IV ,

'8' , 9' , 'A' , 'B' 'C' , 'D' I 'E' , F')

subtype OCTALCHARACTER is HEXCHARACTER range '0' .. '7';

type UNCONSTRAINED-NAME is array (POSITIVE range <)) of CHARACTER;

subtype CONSTRAINEDNAME is UNCONSTRAINEDNAME (1 .. 20);

type E PLOYEE SALARY is digits 7 range 0.00 .. 99_999.99;

subtype BOSSRELATIVESALARY is EMPLOYEESALARY

range 80_000.00 .. 99_999.99;

Syntax Rules

1) lia <constraint> is contained within a <subtype indication>, then:

Case:

a) If the <type mark> denotes a character string subtype, then:

i) The <type mark> shall denote an unconstrained character string subtype.

ii) The <constraint> shall contain an <index constraint>.

iii) The subtype defined by the <index constraint> shall be of the same data type as the
index subtype of the character string subtype denoted by the <type mark>.

Database Language Ada/SQL
52

UNCLASSMIED

iv) The bounds of the subtype defined by the <Index constraint> shall belong to the index
subt of the character string subt denoted by the <type mark>.

b) If the <type mark> denotes an integer or an enumeration subtype, then the <constraint>

shall immediately contain a <range constraint>.

c) If the <type mark> denotes a floating point subtype, then:

i) The <constraint> shall immediately contain either a <range constraint> or a <floating
point constraint>.

ii) If the <constraint> contains a <floating point constraint>, then the value of the
<value specification> contained in the <floating accuracy definition> of the <floating
point constraint> shall not exceed the accuracy of the subtype denoted by the <type
mark>.

2) If a <range constraint> is contained within a <subtype indication>, then:

a) The data type of the <range constraint> shall be the same as that denoted by the <type
mark>.

b) The bounds of the <range constraint> shall belong to the subtype denoted by the <type

mark>.

General Rules

1) A <subtype indication> defines a subtype of the data type denoted by the <type mark>.

2) Case:

a) If no <constraint> appears within the <subtype indication>, then the subtype defined is the
same as that denoted by the <type mark>.

b) If a <constraint> appears within the <subtype indication>, then:

Case:

i) If the <type mark> denotes a character string data type, then:

1) The subtype defined is a constrained character string subtype.

2) The component subtype of the subtype defined is the same as that of the subtype
denoted by the <type mark>.

CCommon elements

53

UNCLASSifIE

3) The index subtype of the subtype defined is the subtype defined by the <index
constraint>.

ii) If the <type mark> denotes an integer data type, then the range of values of the subtype
defined is that defined by the <range constraint>.

iii) If the <type mark> denotes a floating point data type, then:

Case:

1) If the <subtype indication> contains a <floating point constraint>, then the
accuracy and range of values of the subtype defined are those defined by the
<floating point constraint>.

2) If the <subtype indication> does not contain a <floating point constraint> (con-
tains only a <range constraint>), then:

a) The accuracy of the subtype defined is the same as that of the subtype
denoted by the <type mark>.

b) The range of values of the subtype defined is that defined by the <range
constraint>.

iv) If the <type mark> denotes an enumeration data type, then the <enumeration
literal>s of the subtype defined are those of the subtype denoted by the <type mark>
that lie within the range of values defined by the <range constraint>.

Notes

1) The Format and Rules for the Ada/SQL <subtype indication> are patterned after the Ada
subtype-indication, suitably restricted apropos of ANSI SQL capabilities.

2) Compliance with SRs la.iv and 2b is checked by Ada implementations at runtime, and so the rules
might be expressed as GRs for Ada/SOL. The conditions checked may be dynamic in Ada; the
semantics of interfacing with ANSI SOL require that these conditions be known at compile time in
Ada/SQL. An Ada/SQL implementation that reads source code can therefore verify compliance
with these rules. Certain violations of these rules will cause Ada to raise CONSTRAINT-ERROR
at runtime, but specification of when CONSTRAINT-ERROR is raised would require describing
the elaboration of Ada declarations, which is beyond the scope of Ada/SQL.

3) The specification of SRs la.iv and 2b is simplified by not allowing null ranges in Ada/SOL. The ille-
gal Ada/SQL use of null ranges will (in the absence of other errors) not be caught at runtime, since
null ranges are legal in Ada. Again, an Ada/SQL implementation that reads source code could
catch such errors. It should be noted that an Ada/SQL implementation would almost certainly have
to read the SDL source code, which is where most <subtype indication>s would typically appear.
<subtype indication>s can also appear in <variable declaration>s, however, which would

Database Language Ada/SQL
54

UNCLASSIFIED

conceivably not have to be read by an Ada/SQL implementation. Using a variable declared in viola-
tion of these rules, but not of Ada rules, would most likely cause CONSTRAINT-ERROR to be
raised, not at its declaration, but at its use in an Ada/SQL statement.

Common elements
55

UNCLASSIFME

5.5.6 (range constraint>

Function

Specify a range of values.

Format

<range constraint> ::-
ramp <range>

<range> ::-
<value specification>.. <value specification>

Effective Ada Declarations

None.

Example

type DPLOYE-SALARY is digits 7 range 0.00 .. 99_999.99;

Syntax Rules

1) Each <value specification> shall be of an integer, floating point, or enumeration data type.

Case:

a) If the first <value specification> is of an integer data type, then the second <value
specification> shall also be of an integer data type.

b) If the first <value specification> is of a floating point data type, then the second <value
specification> shall also be of a floating point data type.

c) If the first <value specification> is of an enumeration data type, then the second <value
specification> shall also be of an enumeration data type.

2) The <value specification>s shall not contain a <program object name> other than a <named
number>, an <indicator specification>, an <Ada type conversion>, or a CONVERT-TO opera-
tion.

3) The value of the first <value specification> shall not be greater than the value of the second <value
specification>.

4) Case:

a) If a <range> is immediately contained in a <subtype indication>, then it is of a defined data
type.

Database Language Ada/SQL
56

UNCLASSIFIED

b) If a <range> is contained in an <index constraint> of a <character string type>, but is not
contained in a <subtype indication>, then it is of a defined data type.

c) If <range> is contained in an <integer type> or a <floating point type>, then it is not of a
defined data type.

5) If a <range> is of a defined data type, then the data types of both <value specification>s contained

within it shall be the same.

Case:

a) If both <value specification>s are of known data types, then both data types shall be the same
and the data type of the <range> is the same as that data type.

b) If one <value specification> is of a known data type, then the value of the other <value
specification> shall be a value of that data type, and the data type of the <range> is the same
as that data type.

c) If neither <value specification> is of a known data type, then:

Case:

i) If the <range> is immediately contained in a <subtype indication>, then:

Case:

1) If the <type mark> of the <subtype indication> denotes a character string sub-
type, then the value of each <value specification> shall be a value of the index
subtype of that character string subtype, and the data type of the <range> is the
data type of the index subtype.

2) If the <type mark> of the <subtype indication> denotes an integer, floating
point, or enumeration data type, then the value of each <value specification>
shall be a value of that data type, and the data type of the <range> is the data
type denoted by the <type mark>.

ii) If the <range> is contained in an <index constraint> of a <character string type>, but
is not contained in a <subtype indication>, then:

1) Each <value specification> shall consist of only a single <integer literal> or a

single integer <named number>.

2) The data type of the <range> is STANDARD.INTEGER.

6) If a <range> is of a defined data type, then a <range constraint> containing it (if any) is of the
same data type.

Common elements
57

UNCLASSDII

Gene"al Rules

1) A <range> defines a range of values. The first <value specification> specifies the lower bound of
the range; the second <value specification> specifies the upper bound of the range. A value
between the lower and upper bounds, inclusive, belongs to the range.

2) A <range constraint> defines the same range of values as its contained <range>, with the same
bounds.

3) A <range> that is contained within an <index constraint> of a <character string type>, but that is
not contained in a <subtype indication>, defines an integer subtype. The data type and bounds of
the subtype are those of the <range>. (The subtype is used as the index subtype of the <character
string type>.)

Notes

1) The Format and Rules for the Ada/SQL <range constraint> are patterned after the Ada
range-constraint, suitably restricted apropos of ANSI SQL capabilities.

2) SR2 ensures that the <value specification>s are meaningful static Ada simple-expressions.
Although not all contexts for <range> strictly require static expressions, requiring all <range>s to
be static simplifies their specification and does not cost any capability with respect to ANSI SQL.

3) SR3 explicitly prohibits null <range>s. Although permitted in earlier Ada/SQL specifications, the
utility of null <range>s appears so negligible that the simplification gained by prohibiting them far
outweighs any loss of capability.

Database Language Ada/SQL
58

UNCLASSIFIED

5.6 1va1u specification> and <tazget specification>

Function

Specify one or more values or variables.

Format

<value specification> ::-
[+ I -] <value specification term>
I <value specification> + <value specification term>
I <value specification> - <value specification term>

<value specification term> ::-
<value specification factor>

I <value specification term> "<value specification factor>
I <value specification term> / <value specification factor>

<value specification factor> ::- <value specification primary>

<value specification primary>
<variable specification>

I <literal>
I USER
I <Ada type qualification>
i <Ada type conversion>
I [CONVERTTO. <library package name>. <type identifier>]
(<value specification>)

<variable specification> :-
<program object name>
I <indicator specification>

<indicator specification> ::-
INDICATOR (<value specification> [, <indicator value>])

<indicator value> ::-
<value specification>

i NO NULL
I NULL..VALUE

<Ada type qualification> ::-
<type mark>'(<value specification>)

<Ada type conversion> ::-
<type mark> (<value specification>)

<target specification> ::=
<program variable> [, <last variable>] , <indicator variable>]

Common elements
59

UNCLASSIFIED

<program variable> ::- <out variable>

<last variable> ::- <out variable>

<indicator variable> ::- <out variable>

<out variable> ::-
<variable name>

I <type mark> (<variable name>)

Effective Ada Declartions

type VALUESPECIFICATION Is private;

type VALUESPECIFICATIONINTEGER is private;

type VALUESPECIFICATIONFLOATING is private;

type VALUESPECIFICATIONSTRING Is private;

type INDICATORVARIABLE is (NULLVALUE , NOT-NULL);

For a program data type ct:

type VALUESPECIFICATION ct Is private;

For an enumeration data type ct that is not derived from another enumeration
type (an ultimate parent type):

type VALUESPECIFICATION ENUMERATIONct Is private;

For a program data type ct:

function INDICATOR (VALUE : ct ; IND • INDICATORVARIABLE . NOTNULL)
return VALUESPECIFICATIONCt;

function INDICATOR (VALUE : Ct ; IND : INDICATOR-VARIABLE - NOT-NULL)
return VALUESPECIFICATION;

funct ion INDICATOR (VALUE : Ct ; IND : INDICATORVARIABLE : NOTNULL)
return VALUEEXPRESSION ct;

function INDICATOR (VALUE : ct ; IND INDICATOR-VARIABLE :- NOTNULL)
return VALUEEXPRESSION;

For an integer program data type ct:

function INDICATOR (VALUE ct ; IND : INDICATOR VARIABLE - NOTNULL)
return VALUESPECIFICATIONINTEGER;

function INDICATOR (VALUE : ct ; IND INDICATORVARIABLE .- NOTNULL)
return VALUEEXPRESSION INTEGER;

Database Language Ada/SQL
60

MCUSSIFIED

For a floating point program data type ct:

function INDICATOR (VALUE : ct ; IND INDICATORVARIABLE - NOT-NULL)
return VALUE SPECIFICATIONFLOATING;

function INDICATOR (VALUE : ct ; IND INDICATORVARIABLE - NOT NULL)
return VALUE EXPRESSIONFLOATING;

For a character string program data type ct:

function INDICATOR (VALUE : ct ; IND INDICATORVARIABLE NOT NULL
return VALUE SPECIFICATIONSTRING;

function INDICATOR (VALUE : Ct ; IND INDICATORVARIABLE : NOT NULL
return VALUE EXPRESSIONSTRING;

For an enumeration program data type ct with ultimate parent type pt:

function INDICATOR (VALUE : ct ; IND : INDICATORVARIABLE : NOTNULL
return VALUESPECIFICATIONENUMERATIONpt;

function INDICATOR (VALUE : ct ; IND : INDICATORVARIABLE . NOTNULL
return VALUE EXPRESSIONENUMERATIONpt;

-- VALUESPECIFICATIONDATABASEUSERAUTHORIZATIONIDENTIFIER is defined for
-- predefined type DATABASE.USER AUTHORIZATIONIDENTIFIER in accordance with
-- the above - For a program data type ct:
-- type VALUE SPECIFICATIONct is private;

-- VALUEEXPRESSIONDATABASEUSERAUTHORIZATIONIDENTIFIER is defined for
-- predefined type DATABASE.USERAUTHORIZATIONIDENTIFIER in accordance with
-- 5.9 - For a program data type ct:
-- type VALUE EXPRESSION ct is private;

function USER
return VALUESPECIFICATIONDATABASEUSERAUTHORIZATIONIDENTIFIER;

function USER return VALUESPECIFICATION_STRING;

function USER return VALUESPECIFICATION;

function USER
return VALUEEXPRESSIONDATABASEUSERAUTHORIZ ATIONIDENTIFIER;

function USER return VALUEEXPRESSIONSTRING;

function USER return VALUEEXPRESSION;

type USERVALUESPECIFICATION is private;

function USER return USERVALUESPECIFICATION;

C(mimn elemnts
61

UNCIASSIFIID

function INDICATOR
VALUE USERVALUE_SPECIFICATION;
IND INDICATORVARIABLE :- NOTNULL

return VALUE_SPECIFICATIONDATABASEUSERAUTHORIZATIONIDENTIFIER;

function INDICATOR
VALUE USERVALUESPECIFICATION;
IND INDICATORVARIABLE - NOT_NULL

return VALUESPECIFICATION;

function INDICATOR
VALUE USERVALUE SPECIFICATION;
IND INDICATORVARIABLE :- NOTNULL

return VALUEEXPRESSIONDATABASEUSERAUTHORIZATIONIDENTIFIER;

function INDICATOR
VALUE USERVALUESPECIFICATION;
IND INDICATORVARIABLE :- NOTNULL) return VALUEEXPRESSION;

function INDICATOR
VALUE USERVALUE_SPECIFICATION;
IND INDICATORVARIABLE :- NOTNULL

return VALUE SPECIFICATIONSTRING;

function INDICATOR

VALUE USERVALUESPECIFICATION;
IND INDICATORVARIABLE :- NOTNULL

return VALUEEXPRESSIONSTRING;

For an integer program subtype ct defined in library package p, of data type
dt (ct may be the same as dt):

package CONVERTTO is

package p Is

function ct (LEFT : VALUESPECIFICATIONINTEGER)
return VALUESPECIFICATIONdt;

function ct (LEFT : VALUESPECIFICATIONINTEGER)
return VALUESPECIFICATION;

function ct (LEFT : VALUESPECIFICATIONINTEGER)
return VALUESPECIFICATIONINTEGER;

end p;

end CONVERTTO;

For a floating point program subtype ct defined in library package p, of
data type dt (ct may be the same as dt):

Database Language Ada/SQL
62

0LNASSIFIH)

package CONVERTTO is

4package p Is

function ct (LEFT : VALUE_SPECIFICATIONFLOATING

return VALUESPECIFICATION_dt;

function ct (LEFT : VALUESPECIFICATIONFLOATING
return VALUE-SPECIFICATION;

function ct (LEFT : VALUESPECIFICATIONFLOATING
return VALUESPECIFICATIONFLOATING,

function ct (LEFT : VALUE_SPECIFICATIONINTEGER
return VALUESPECIFICATION_dt;

function ct (LEFT : VALUESPECIFICATIONINTEGER
return VALUE SPECIFICATION;

function ct (LEFT : VALUESPECIFICATIONINTEGER

return VALUE SPECIFICATIONFLOATING;

end p;

end CONVERTTO;

For a character string program subtype ct defined in library package p, of
data type dt (ct may be the same as dt):

package CONVERTTO is

package p Is

function ct (LEFT : VALUESPECIFICATIONSTRING
return VALUE_SPECIFICATION dt;

function ct (LEFT : VALUE_SPECIFICATIONSTRING
return VALUESPECIFICATION;

* function Ct (LEFT : VALUESPECIFICATIONSTRING
return VALUESPECIFICATIONSTRING;

end p;

end CONVERT-TO;

For an enumeration program subtype ct defined in library package p, of data
type dt with ultimate parent type pt (ct may be the same as dt, and dt may
be the same as pt):

package CONVERTTO Is

Cmmn elmawnts
63

M1ASSIFIED

package p Is

function ct (LEFT VALUE SPECIFICATIONENUIMRATIONpt)
return VALUESPECIFICATIONdt;

function ct (LEFT : VALUESPECIFICATION ENUMERATIONpt)
return VALUESPECIFICATION;

function ct (LEFT : VALUE SPECIFICATIONENUNERATIONpt)
return VALUESPECIFICATIONENUMERATION-Pt;

end p;

end CONVERT-TO;

Example

NEWEMPLOYEENAME EMPLOYEENAME;
NEW_]MPLOYEESALARY HOURLY_WAGE;

SALARY ISKNOWN INDICATORVARIABLE;
CURRENTEMPLOYEE,
HISMANAGER EMPLOYEENAME;
HIS SALARY HOURLY_WAGE;
CURSOR CURSORNAME;
EMPLOYEE LAST,
MANAGERLAST NATURAL;
SALARY INDICATOR,
MANAGERINDICATOR INDICATOR-VARIABLE;

INSERTINTO (EMPLOYEE (NAME & SALARY & MANAGER),
VALUES (- NEWEMPLOYEENAME

and CONVERTTO. EXAMPLETYPES. EMPLOYEESALARY
(INDICATOR (2080.0 * NEW EMPLOYEESALARY , SALARYISKNOWN

and USER);

-- variations: INDICATOR (- 2080.0 / NEWEMPLOYEESALARY , NOT-NULL
INDICATOR (+ 2080.0 + NEWEMPLOYEESALARY , NULLVALUE
INDICATOR ((2080.0 - NEWEMPLOYEE SALARY));

INSERT INTO (EMPLOYEE (NAME a SALARY & MANAGER),
VALUES <- NEWEMPLOYEENAME

and EmLOYEESALARY (2080.0 * NEWEMPLOYEESALARY),
and USER);

-- variation: EMPLOYEE-SALARY (HOURLYWAGE'(2080.0) * NEW EMPLOYEESALARY

DECLAR (CURSOR , CURSORFOR -)
SELEC (NAME & SALARY & MANAGER,
FROM - EMPLOYEE));

FETCH (CURSOR);
INTO (CURRENTEMPLOYEE , EMPLOYEE-LAST);

Database Language Ada/SQL
64

UNaAASSIFIED

INTO EMSPLOYE-SALARY (HIS-SALARY),SALARY-INDICATOR)
-- variation: INTO (IMPLOYEE_SALARY (HIS-SALARY));

INTO (HIS-MANAGER , MANAGERLAST , MANAGERINDICATOR);

Syntax Rules

1) A <value specification> specifies a value that is not selected from a table.

2) A <variable specification> identifies a named host object or a named host object and an indicator
value. The data type of the indicator value shall be IMDICATOR.VARIABLE.

3) A <target specification> specifies a variable that can be assigned a value.

4) The data type of USER is DATABASE.USER.AUTHOREZATIONJDENTIFIER.

5) A <value specification term>, <value specification>, or <value specification factor> that is an
operand to one of the arithmetic operators shall not contain an <indicator specification>.

6) If a <value specification primary> not contained in an <indicator value> is of a character string or
an enumeration data type, then the <value specification> containing it shall not include any arith-
metic operators. The data type of the result is the same as that of the <value specification primary>.

7) A <value specification> not contained in an <indicator specification>, an <Ada type
qualification>, an <Ada type conversion>, an <in value fist>, or an <insert value list> shall not
contain any arithmetic operators.

8) The data type of the result of a monadic arithmetic operator is the same as the data type of the

(integer or floating point) <value specification term> to which it is applied.

9) Case:

a) If both operands of a dyadic arithmetic operator are of a universal data type, then:

Case:

i) If both operands are of the same universal data type (universal integer or universal float.
ing point), then the data type of the result is the same as that of the operands.

ii) If one operand is of the universal integer data type and the other operand is of th,
universal floating point data type, then the result is of the universal floating point dati
type, and one of the following shall be true:

1) The operator shall be multiplication, or

Common elements
65

UNCLASSFlE1

2) The operator shall be division, and the right operand shall be the one of the
universal integer data type.

b) If either operand of a dyadic arithmetic operator is not of a universal data type, then both
operands shall be of the same data type. The data type of the result is the same as that of the
operands.

10) The data type of an <indicator specification> is that of its <value specification>.

11) An <indicator specification> shall not contain an <indicator specification> or a CONVERT-TO
operation.

12) The <value specification> of an <indicator specification> shall contain at least one of the follow-
ing: the <key word> USER, a <program object name> other than a <named number>, an <Ada
type qualification>, or an <enumeration literal> which is a literal of exactly one enumeration data
type declared in a <schema package> or the predefined Ada/SQL environment.

13) A <value specification> used as an <indicator value> shall be of data type INDICATOR-
VARIABLE.

14) The data type of the result of an <Ada type qualification> or an <Ada type conversion> is that
denoted by the <type mark>, and shall be an integer, floating point, character string, or enumera-
tion data type.

15) The <value specification> of an <Ada type qualification> or an <Ada type conversion> shall not
contain an <indicator specification> or the <key word> USER.

16) The <value specification> of an <Ada type conversion> shall contain at least one of the following:
a <program object name> other than a <named number>, an <Ada type qualification>, or an
<enumeration literal> which is a literal of exactly one enumeration data type declared in a
<schema package> or the predefined Ada/SQL environment.

17) The <value specification> of an <Ada type qualification> shall be of the data type denoted by the
<type mark>.

18) Case:

a) If the <type mark> of an <Ada type conversion> denotes an integer or floating point data
type, then the <value specification> of that, <Ada type conversion> shall be of an integer or
floating point data type.

b) If the <type mark> of an <Ada type conversion> denotes a character string data type, then
the <value specification> of that <Ada type conversion> shall be of a character string data
type such that the component data types of both character string data types are the same.

Database Language Ada/SQL
66

UNCLASSEMED

c) If the <type mark> of an <Ada type conversion> denotes an enumeration data type, then
the <value specification> of that <Ada type conversion> shall be of an enumeration data
type such that both enumeration data types have the same ultimate parent type.

19) The data type of the result of a CONVERT-TO is that denoted by the <type identifier>, and shall

be an integer, floating point, character string, or enumeration data type.

Case:

a) If the <library package name> is STANDARD, then the <type identifier> shall be declared
within the STANDARD Ada/SQL predefined environment.

b) If the library package denoted by the <library package name> is part of the Ada/SQL
predefined environment, then the <type identifier> shall be declared within that library pack-
age.

c) If the library package denoted by the <library package name> is not part of the Ada/SQL
predefined environment, then the <type identifier> shall be declared within the ADA.SQL
nested package of that library package.

20) The <value specification> operand of a CONVERT-TO shall contain at least one of the following:
an <indicator specification> or the <key word> USER.

21) A <value specification> not contained in an <in value list>, an <insert value list>, or a <like

predicate> shall not contain a CONVERT-TO operation.

22) Case:

a) If the <type identifier> of a CONVERT-TO denotes an integer data type, then the <value
specification> operand of the CONVERT-TO shall be of an integer data type.

b) If the <type identifier> of a CONVERT-TO denotes a floating point data type, then the
<value specification> operand of the CONVERT-TO shall be of an integer or a floating
point data type.

c) If the <type identifier> of a CONVERT-TO denotes a character string data type, then the
<value specification> operand of the CONVERT-TO shall be of a character string data type.

d) If the <type identifier> of a CONVERT-TO denotes an enumeration data type, then the
<value specification> operand of the CONVERT-TO shall be of an enumeration data type
such that both enumeration data types have the same ultimate parent type.

23) The data type of a <target specification> is that of its <program variable>, and shall be an integer,
floating point, character string, or enumeration data type.

Common elements67

UNCLASSIFIED

24) A <target specification> shall contain a <last variable> if and only if its <program variable> is of
a character string data type. The data type of the <last variable> shall be the same as that of the
index type of the <program variable>.

25) The data type of an <indicator variable> shall be INDICATORVARIABLE.

26) If an <out variable> contains a <type mark>, then the <type mark> shall denote a data type.

Case:

a) If the data type denoted by the <type mark> is declared with simple name ct in the STAN-
DARD Ada/SQL predefined environment, then the form of the <type mark> shall be either
"STANDARD.ct" or "ct".

b) l the data type denoted by the <type mark> is declared with simple name ct in a library pack-
age p that is part of the Ada/SQL predefined environment, then the form of the <type mark>
shall be either "p.ct" or "ct".

c) If the data type denoted by the <type mark> is declared in a <schema package> p, with a
<type declaration> containing <type identifier> ct, then the form of the <type mark> shall
be either "p.ADASOL.ct" or "ct".

27) If an <out variable> contains a <type mark>, then:

Case:

a) If the <type mark> denotes an integer or floating point data type, then the variable denoted
by the <variable name> shall be of an integer or floating point data type.

b) If the <type mark> denotes a character string data type, then the variable denoted by the
<variable name> shall also be of a character string data type such that the component data
types of both character string data types are the same.

c) If the <type mark> denotes an enumeration data type, then the variable denoted by the
<variable name> shall be of an enumeration data type such that both enumeration data types
have the same ultimate parent type.

28) Case:

a) If an <out variable> contains a <type mark>, then:

Case:

i) If the <type mark> does not denote an unconstrained character string subtype, then
the subtype of the <out variable> is that denoted by the <type mark>.

Database Language Ada/SQL
68

UNCLASS I D

H) If the <type mark> denotes an unconstrained character string subtype, then the sub-
type of the <out variable> is that denoted by the <type amark>, further constrained
with the actual index bounds of the variable denoted by the <variable name>.

b) If an <out variable> does not contain a <type mark>, then the subtype of the <out vari-

able> is that of its <variable name>.

General Rules

1) If arithmetic operators are not specified, then the result of the <value specification> is the value of
the specified <value specification primary>.

2) The monadic arithmetic operators + and - specify monadic plus and monadic minus, respectively.
Monadic plus does not change its operand. Monadic minus reverses the sign of its operand. Except
where the result is of a universal data type, the result of a monadic operator shall belong to the base
type of its operand; otherwise the program causing the <value specification> to be evaluated is
erroneous.

3) The dyadic arithmetic operators +, -, , and / specify addition, subtraction, multiplication, and divi-
sion, respectively. A divisor shall not be 0; otherwise, the DATA....XCEPTION exception is raised.
Except where the result is of a universal data type, the result of a dyadic arithmetic operator shall
belong to the base type of its operands; otherwise, the program causing the <value specification> to
be evaluated is erroneous.

4) All arithmetic operators shall yield mathematically correct results.

a) The result of integer operations other than division shall be exact.

b) The result of integer division shall be truncated toward 0 to the nearest integer.

c) The result of floating point operations shall be correct to the accuracy of the data type of the
result.

5) Expressions within parentheses are evaluated first and when the order of evaluation is not specified
by parentheses, multiplication and division are applied before monadic operators, monadic opera-
tors are applied before addition and subtraction, and operators at the same precedence level are
applied from left to right.

6) The value of a <variable specification> that is a <program object name> is the value of the pro-
gram object denoted by the <program object name>. The value of a program object shall be
defined at the time of its evaluation in an <SQL statement>; otherwise, the execution of the pro-
gram causing the <variable specification> to be evaluated is erroneous.

7) If an <indicator specification> contains an <indicator value> that is "NULLVALUE" or a
<value specification> evaluating to "NULL-VALUE", then the value specified by the <indicator
specification> is null. Otherwise, the value specified by an <indicator specification> is the value of

tCommon
elements

69

UNCLASSIFIED

its <value specification>.

8) The value specified by a <literal> is the value represented by that <literal>.

9) The value specified by USER is equal to the implicit <authorization identifier> that has been
assigned to the execution of the program causing the USER <value specification> to be evaluated.

10) The result of an <Ada type qualification> is the value of its <value specification>, typed according
to the <type mark>. This value shall belong to the subtype denoted by the <type mark>; other-
wise, the CONSTRAINT-EIRROR exception is raised.

11) The result of an <Ada type conversion> is the value of its <value specification>, typed according
to the <type mark>. If the result of the <value specification> does not belong to the subtype
denoted by the <type mark>, then the CONSTRAINT..ERROR exception is raised.

a) Conversion of an integer value to an integer value shall be exact.

b) Conversion of a floating point value to an integer value shall round to the nearest integer; a
result halfway between two integers (to the accuracy of the floating point data type) may be
rounded either up or down. Any program whose effect depends on the direction of rounding
of values halfway between two integers is erroneous.

c) Conversion of an integer or a floating point value to a flioating point value shall retain at least
the accuracy of the subtype denoted by the <type mark>.

d) Conversion of a character string value to a character string value shall be as follows:

i) The data type of the <value specification> and the data type denoted by the <type
mark> shall both have component subtypes allowing the same range of characters; oth-
erwise, the CONSTRAINT...ERROR exception is raised.

ii) If the <type mark> denotes an unconstrained character string subtype then the index
bounds of the result are the same as the index bounds of the <value specification>,
converted to the index data type of the unconstrained character string subtype denoted
by the <type mark>. If the <value specification> is not a null character string, then
the index bounds shall belong to the index subtype; otherwise, the
CONSTRAINT-ERROR exception is raised.

iii) If the <type mark> denotes a constrained character string subtype, then the number of
characters in the character string subtype shall be the same as the number of characters
in the <value specification>; otherwise, the CONSTRAINT-ERROR exception is
raised.

iv) Successive characters in the result are set to successive characters in the <value
specification>.

Database Language Ada/SQL
70

UNCLASSIIED

e) Conversion of an enumeration value to another enumeration value shall be according to
matching enumeration literals.

12) The result of a CONVERT-TO with a <value specification> equal to the null value is the null
value. If the subtype denoted by the <type identifier> does not permit null values, then the
DATAEXCEPTION exception is raised.

13) The result of a nonnull CONVERT-TO is the value of its <value specification>, typed according to
the <type identifier>. If the result of the <value specification> does not belong to the subtype
denoted by the <type identifier>, then the DATA..EXCEPTION exception is raised.

Case:

a) Conversion of an integer value to an integer value shall be exact.

b) Conversion of an integer or a floating point value to a floating point value shall retain at least
the accuracy of the subtype denoted by the <type identifier>.

c) Conversion of a character string value to a character string value shall be as follows:

i) The result character string shall have as many characters as the <value specification>

character string.

Case:

1) If the subtype denoted by the <type identifier> is an unconstrained character
string, then the maximum number of characters in a string of that subtype shall
not be less than the number of characters in the character string <value
specification>, otherwise the DATAEXCEYHON exception is raised.

2) If the subtype denoted by the <type identifier> is a constrained character string,
then the number of characters in the character string subtype shall be the same as
the number of characters in the character string <value specification>, otherwise
the DATAEXCETIION exception is raised.

ii) Successive characters in the result are set to successive characters in the <value
specification>, converted to the component data type of the character string data type
denoted by the <type identifier>. If any charaoter in the <value specification> does
not belong to the component subtype, then the DATA,_EXCEPTION exception is
raised.

d) Conversion of an enumeration value to another enumeration value shall be according to
matching enumeration literals.

14) A value to be assigned to an <out variable> shall belong to the data type of that <out variable>;
otherwise, the DATA..EXCEPTION exception is raised. If this rule indicates that the

Common elements
71

UNCASS IiFD

DATA.-EXCEPTION exception is to be raised, and the rules of 8.6, <fetch statement> or 8.10,
<select statement> indicate that the CONSTRAINT-ERROR exception is to be raised for the
same assignment, then the DATA.EXCEPTION exception is the one that is raised.

15) Assignment of a value to the variable denoted by the <variable name> of a <out variable> that is
of the form <type mark> (<variable name>) converts the data retrieved from the database from
the data type denoted by the <type mark> to the data type of the variable.

a) Conversion of an integer value to an integer value shall be exact.

b) Conversion of a floating point value to an integer value shall round to the nearest integer; a
result halfway between two integers (to the accuracy of the floating point data type) may be
rounded either up or down. Any program whose effect depends on the direction of rounding
of values halfway between two integers is erroneous.

c) Conversion of an integer or a floating point value to a floating point value shall retain at least
the accuracy of the subtype of the variable.

d) Conversion of character string values is implicit in the character-by-character assignment
described for them. However, the following conditions shall hold; otherwise, the
CONSTRAINTERROR exception is raised.

i) The data type of the variable and that denoted by the <type mark> shall both have
component subtypes allowing the same range of characters.

ii) If the <type mark> denotes an unconstrained character string subtype then the index
bounds of the variable shall belong to the index subtype of the unconstrained character
string subtype.

iii) If the <type mark> denotes a constrained character string subtype, then the number of
characters in the denoted subtype shall be the same as the number of characters in the
variable.

iv) If this rule indicates that the CONSTRAINT-ERROR exception is to be raised, and
General Rule 14, or the rules of 8.6, <fetch statement> or 8.10, <select statement>
indicate that the DATA-EXCEPTION exception is to be raised for the same assign-
ment, then the CONSTRAINTERROR exception is the one that is raised.

e) Conversion of an enumeration value to another enumeration value shall be according to
matching enumeration literals.

16) If the value to be assigned to an <indicator variable> does not belong to the subtype of its contained
<variable name>, then the CONSTRAINT-ERROR exception is raised.

NOTE: Additional rules relevant to <target specification>s may be found in 8.6, <fetch statement>,
and 8.10, <select statement>.

Database Language Ada/SQL
72

UNCLASSIFIED

Notes

1) The functions effectively declared for <value specification> have two classes of return type, based
on the context in which the <value specification> appears, as follows (note that <value
specification>s not containing the <key word> USER or an <indicator specification> are Ada
program expressions - no effective Ada/SQL functions are declared for them):

VALUE-EXPRESSION class - used in contexts where a <value specification> is used as a <value
expression>

VALURSPECIFICATION class - used in contexts where the syntax specifically requires a <value
specification>, other than within <value expression>: <in value list>, <like predicate>, <insert
value>

The VALUEEXPRESSION class contains four subclasses of return type, based on the context in
which the <value expression> containing the <value specification> appears. The subclass names
and the contexts are the same as the class names and contexts for <value expression>, as described
in Note 1 of section 5.9. Lists of contexts in which each subclass of return type is effectively used for
a <value expression> that is a <value specification> can therefore be found in that Note; only brief
descriptions of those contexts are given here. The four subclasses of return type, and the contexts
in which they are used, are:

VALUEEXPRESSION - used in contexts where the data type of the <value specification> is not
important for the effective Ada declarations.

VALUEEXPRESSION.ct (typed according to program type) - used in contexts where the result of
the <value specification> will be used in an operation for which the effective Ada declarations are
defined with strongly-typed operands.

VALUEEXPRESSION.x, where x is INTEGER, FLOATING, STRING, or ENUJMERATION_..-
ct, where ct is the name of an enumeration data type not derived from any other enumeration type
(an ultimate parent type) - used in contexts where the result of the <value specification> is the
operand of a CONVERT-TO.

VALUE.EXPRESSIONy, where y is INTEGER or FLOATING - used in contexts where the
result of the <value specification> will be used in an operation with only one operand, where the
type class (integer or floating point vs. character string and enumeration) of the operand is impor-
tant, and where the context of the operation is such that the function effectively declared for it
returns a result of type VALUE-EXPRESSION or VALUE-EXPRESSIONy (i.e., not strongly
typed and not CONVERT-TO). Note that two of the same types (VALUEEXPRESSION_-
INTEGER and VALUFEXPRESSIONFLOATING) are used for both this subclass and the pre-
vious subclass, so the effective <value specification> functions with those return types apply to
both subclasses. Also note that the VALUE.EXPRESSIONy classs of functions effectively
declared for <value expression>, as well as for <column specification>, also return values of type
VALUEEXPRESSIONSTRING and VALUE-EXPRESSION..ENUMERATION. There is no
context in which a <value specification> may be used that would make these return types applicable
to the effective functions declared for <value specification>, however.

The VALUE-SPECIFICATION class contains three subclasses of return type, based on the con-
text in which the <value specification> appears, as follows:

C Common elements

73

UNCLASSIFIED

VALUESPECIFICATION - used in contexts where the data type of the <value specification> is
not important for the effective Ada declarations. Relevant contexts immediately containing <value
specification>:

<insert value>

VALU&.SPECFICAION..ct (typed according to program type) - used in contexts where the
result of the <value specification> will be used in an operation for which the effective Ada declara-
tions are defined with strongly-typed operands. Relevant contexts immediately containing <value
specification>:

<in value list>

<like predicate>

VALUESPECICATIONx, where x is INTEGER, FLOATING, STRING, or
ENUMERATIONct, where ct is the name of an enumeration data type not derived from any other
enumeration type (an ultimate parent type) - used when the result of the <value specification> is the
operand of a CONVERT-TO operation.

Note that no VALUESPECIFICATIONy return type class is required, unlike the effective func-
tions declared for <value expression> and <column specification>, which require
VALUE.EXPRESSIONy and COLUMNSPECIFICATION-y return classes, respectively.
There is no context in which a <value specification> may be used that would make this class of
return type applicable to the effective functions declared for <value specification>.

2) The INDICATOR effective functions are used to flag whether or not a particular program value is
null, and they also effectively convert values from their program representation (parameter of pro-
gram data type ct) to their internal Ada/SQL effective type representation (various return types).

3) Since the value returned by the <key word> USER is taken to be of character string data type
DATABASE.USER-AUTHORIZATIONJDEN IFIER, the appropriate USER functions are
effectively declared returning the six relevant Ada/SQL effective type representations (replace x
with either VALUESPECICATION or VALUEEXPRESSION): xDATABASEUSER_-
AUTHORIZATIONJIDENTIFIER (for strongly typed contexts), xSTRING (for contexts in
which the type class is important), and x (for contexts in which operands to the effective functions
are untyped).

4) The effective type representations returned by the effective USER functions just noted cannot be
used as parameters to the effective INDICATOR functions described above, since those parameters
must be of program types. However, the <key word> USER is permitted to be the operand of an
<indicator specification>. To provide effective declarations for this, an effective USER function,
returning a value of effective type USERVALUESPECIFICATION, is declared. Six INDICA-
TOR functions, with this type as parameter and the appropriate return types (same as for effective
USER functions discussed in previous note) are then effectively declared.

5) There are several CONVERT-TO functions effectively declared for each subtype, ct, to which a
value may be converted. These return a value typed in one of the VALUE.SPECIFICATION subc-
lasses, as described in Note 1, above. The <value specification> CONVERT-TO functions are
different from those defined for <value expression> in 5.9, since the former are used in contexts

Database Language Ada/SQL
74

UNCLASSIFIED

where only a <value specification> is permitted, while the latter are used in contexts where any type
of <value expression> is permitted by the BNF. The <value specification> CONVERT-TO func-
tions are, of course, also different from those defined for <column specification> in 5.7, which are
used in contexts where only a <column specification> is permitted.

The effective type of the parameter to each of the CONVERT-TO functions denotes the classes of
data types that may be converted to the target data type. Thus, only integer values may be converted
to an integer data type, either integer or floating point values may be converted to a floating point
data type, and only string values may be converted to a string data type. Enumeration data types are
themselves divided into classes, since (by Ada rules) a conversion is allowed from an operand type
to a target type if one of the two types is derived from the other, directly or indirectly, or if there
exists a third type from which both types are derived, directly or indirectly. This enables enumera-
tion types to be partitioned into classes, with types in the same class being mutually convertible
while those in different classes are not. Within each class there exists a data type that is not a
derived type; all other types in the class are derived, directly or indirectly, from it. We use this so-
called ultimate parent type to designate the class.

We have elected to type the parameter of effective CONVERT-TO functions according to the
appropriate data type class. It would also be feasible to strongly type the parameter according to the
actual data type of the operand being converted. An implementation which generates all possible
effective Ada/SQL declarations based on the type declarations contained in a schema would then
have to generate order(n**2) functions, however, where n is the number of different data types
declared. By using type classes, the number of functions that must be generated is order(n).

6) The Ada/SQL <value specification> conforms to the ANSI SQL <value specification>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

Common elemenlt
75

UNCLASS]FIED

ANSI SQL Ada/SQL Sea Notes

SRI SRI -

SR2 - 7

SR3 SRI 8

SR4 S13 -

S]5 - 9

SR6 SR4 10
- 1 5 11
- SR6 12

- SR7 13
- SR8-S1kl0 14

- SRll 15
- SR12 16
- SR13 17
- 14 18
- SR15 19
- SR16 20

- SR17 21
- SR18 22

- SR19 23
- SR20 24

- S21 25

-- S22 26
- SR23 27
-- S24-SR25 28

- R26 29

- 527 30

- SR28 31
- GRI -

- GR2-GR3 32

- GR4 33

-- G5 34

- GR6 35

01 - 36
GR2 GR7 37
G3 GR8 -

GR4 GR9 38
- GR10 39
- GRII 40
- GR12-GR13 41
- GR14 42
- GR15 43
- GR16 44

7) ANSI SQL <parameter specification>s are not relevant to Ada/SQL.

8) Ada/SQL uses Ada's strong typing to define indicator values. INDICATOR-VARIABLE is an

enumeration type with values NOT-NULL and NULLVALUE.

9) ANSI SQL <parameter specification>s are not relevant to Ada/SQL. The restriction on the use of

<variable specification> given in ANSI SQL SR5 is not relevant to Ada/SQL, since Ada/SQL is

essentially entirely an embedded language, and <variable specification>s can therefore be used

Database Language Ada/SQL
76

UNCLASSIFIED

anywhere within it.

10) Ada/SQL SR4 expresses one aspect of Ada/SQL's strong typing.

Release 1 implementations do not support the <key word> USER.

11) An ANSI SOL <value specification> is limited to one program value and (optionally) one indica-
tor, with no operators permitted. Ada/SQL extends this slightly, by allowing arithmetic expressions
and various data typing operations within <value specification>s. Ada/SQL does enforce the
ANSI SOL restriction of only one indicator within a <value specification>, however.

12) Ada/SQL SR6 expresses one aspect of Ada/SQL's strong typing.

13) A <value specification> not contained in one of the contexts mentioned in SR7 must, by virtue of
the grammar and other Syntax Rules, be immediately contained in a <value expression>. Arith-
metic operators may be applied to <value specification>s contained within <value expression>s by
using the <value expression> arithmetic operator syntax, which happens to be the same as that
defined for <value specification>. Not allowing <value specification> arithmetic operators to
appear immediately within <value expression>s is merely a syntactic device to avoid parsing ambi-
guity; the language would look the same whether they were permitted or not.

It should be noted that the arithmetic operators allowed in a <value specification> are those of
ANSI SQL; Ada defines several more. It would be possible to implement an Ada/SQL system that
allowed all Ada arithmetic operators in <value specification>s, since <value specification>s (other
than the <key word> USER) represent program values that can be computed independently of the
database. Ada/SQL <value specification> operators are restricted to those of ANSI SQL because
it was felt that allowing extra operators in some portions of the language but not in others would be
confusing to users.

14) Ada/SQL SRS-SR10 express various aspects of Ada/SQL's strong typing. SR9 embodies Ada rules
i for handling numbers of type universaUnteger and universal-real.

15) The effective Ada declarations for <indicator specification> and CONVERT-TO are functions
that return values of special internal Ada/SQL types. <indicator specification>s are designed to be
used with user-defined (or predefined) program types, and so cannot be used on the result of an
<indicator specification> or a CONVERT-TO.

16) Ada/SQL SR12 ensures that the type of the <value specification> operand to an effective INDI-
CATOR function is known from the source text. This is to avoid ambiguities in the effective Ada
functions. For example, consider two floating point data types, ANNUAL-SALARY and
MONTHLY-SALARY, two program variables, ANNUAL-PAY and MONTHLY.PAY, of those
two data types, respectively, and a program containing the following two fragments of <insert
statement>s (PAY-KNOWN is a variable of type INDICATORKVARIABLE):

VALUES <- INDICATOR (ANNUALPAY , PAYKNOWN) and .

. VALUES <- INDICATOR (MONTHLYPAY , PAYKNOWN) and .

Common elements
77

UNCLASSIFIED

An implementation which actually generates the effective Ada declarations must generate at least
the following:

function INDICATOR
VALUE ANNUAL_SALARY;
INDICATOR INDICATOR-VARIABLE -NOTNULL)

return VALUE-SPECIFICATION;

function INDICATOR
(VALUE MONTHLYSALARY;

INDICATOR INDICATOR-VARIABLE -NOTNULL)

return VALUE_SPECIFICATION;

Now, suppose the same program also contains the following fragment of an <insert statement>, in

violation of SR12:

. VALUES <- INDICATOR (25_000.00 , PAYKNOWN) and

25-000.00 is a literal value of both ANNUALSALARY and MONTHLYSALARY data types, so
that the effective INDICATOR function is ambiguous. To comply with SR12, the type of the literal
can be explicitly qualified, as in the following legal fragment:

* VALUES (- INDICATOR (ANNUALSALARY' (25_000.00) , PAYKNOWN
and

Release I implementations do not enforce SR12 if the <value specification> is of an integer, float-
ing point, or character string data type. Instead, the type of the <value specification> is assumed to
be STANDARD.INTEGER, STANDARD.FLOAT, or STANDARD.STRING, as appropriate.

17) Release 1 implementations do not support <indicator value>s. Hence, the optional <indicator
value> cannot be used in an <indicator specification>.

18) Ada/SQL SR14 expresses an Ada rule with respect to type conversions and qualifications.

19) The effective Ada declarations for <indicator specification> and the <key word> USER are func-
tions that return values of special internal Ada/SQL types. Ada/SQL <Ada type qualification>s
and <Ada type conversion>s are designed to be used with user-defined (or predefined) program
types, and so cannot be used on the result of an <indicator specification> or the <key word>
USER.

20) Ada/SQL SR16 ensures that the type of the operand of an <Ada type conversion> is known from
the source text, in accordance with the Ada type conversion requirement that "the type of the
operand of a type conversion must be determinable independently of the context."

21) Ada/SQL SR17 restates an Ada requirement for qualified expressions.

22) The rules for <Ada type conversion>s differ from those for CONVERT-TO. CONVERT-TO is
provided for <value specification>s in order to provide syntax that is consistent with that of
<column specification> and <value expression>. <Ada type conversion>s are provided because

Database Language Ada/SOL
78

UNCLASIFIED

they are an integral pan of the Ada language. Thus, even though both forms of type conversion
differ, each may find a useful place in an Ada/SOL program.

23) Based on the SDL syntax rules, the expanded name of a user-defined subtype denoted by a <type
identifier> is <library package name>.ADA..SQL.<type identifier>. The designation of a
CONVERT-TO for that subtype is, however, CONVERTTO.<hbrary package name>.<type
identifier>, omitting the ADASQL. Omitting the ADA_SQL does not introduce any ambiguities,
because the only <type identifier>s contained in the named library package that may be referenced
in a CONVERT-TO are those defined in the ADASOL nested package.

24) A <value specification> not containing an <indicator specification> or the <key word> USER is,
as far as the effective Ada declarations are concerned, of a user-defined (or predefined) program
type. If CONVERT-TO were allowed to data type ti, defined in library package p, from such a
<value specification> of data type t2, then the following CONVERT-TO function (as well as oth-
ers) must be effectively declared:

package CONVERT_TO Is

package p Is

function tl (LEFT : t2) return VALUESPECIFICATION tl;

end p;

end CONVERTTO;

An implementation which generates all possible effective Ada/SQL declarations, based on the type
declarations contained in a schema, would have to generate order(n*2) such functions, where n is
the number of different data types declared. By prohibiting the <value specification> operand of a
CONVERT-TO from being of a program type, SR20 ensures that the number of functions
effectively declared is linear in the number of user data types defined, rather than depending on the
square of the number of data types. Note that the effective Ada/SQL declarations are such that a
<value specification> containing an <indicator specification> or the <key word> USER, when
used as the operand to a <value specification> CONVERT-TO, effectively returns an object of one
of the VALUESPECIFICATIONx types described in Note 1, rather than a type unique to its
underlying conceptual type, thereby avoiding the n**2 problem.

The restriction of Ada/SQL SR20 should actually have virtually no impact on Ada/SQL program-
mers, because <Ada type conversion>s (described in this section) can be used on the prohibited
<value specification>s. CONVERT-TO does provide more flexibility on character string conver-
sions than does Ada type conversion (see Note 41). To use this flexibility on program objects, the
program object can be expressed as an <indicator specifcation> to comply with Ada/SQL SR20.
For example, the following violates SR20 (assume that SOCIAL..SECURITYNUMBER is a pro-
gram variable of a character string type, with components of a data type other than those of charac-
ter string type IDENTIFICATION.NUMBER, defined in package P):

. CONVERT TO.P. IDENTIFICATION NUMBER
(SOCIALSECURITYNUMBER)

However, the following has the exact same effect, and is permitted:

Cmmnn elements
79

UNCASSIFIiD

. CONVERTTO. P . IDENTIFICATION NUMBER
(INDICATOR (SOCIALSECURITYNUMBER))

25) The only context not mentioned in SR21 in which a <value specification> can appear (other than in
another <value specification>) is <value expression>. Type conversions may be applied to <value
specification>s contained within <value expression>s by using the CONVERT-TO syntax defined
for <value expression>, which happens to be the same as that defined for <value specification>.
Not allowing <value specification> CONVERTTOs to appear within <value expression>s is
merely a syntactic device to avoid parsing ambiguity; the language would look the same whether it
were permitted or not.

26) CONVERT-TO is designed such that only types of the same class are mutually convertible: numer-
ics to numerics, character strings to character strings, and enumerations to enumerations within the
same ultimate parent type. Numerics are not totally mutually convertible, however. Although both
integer and floating point values can be converted to a floating point type, only integer values can be
converted to an integer type. Why not permit a floating point value to be converted to an integer
type, particularly since "all numbers are comparable" in ANSI SQL? The ANSI comparability
statement notwithstanding, ANSI SOL does not permit approximate numeric values (the analog of
Ada/SQL floating point) to be assigned to exact numeric (a superset of Ada/SQL integers) database
columns or program variables. To enforce this restriction in Ada/SQL, CONVERT-TO is not
allowed from a floating point value to an integer type. The net result is that any database computa-
tions involving both integer and floating point values must be done in a floating point type. This
would most likely be the desired mode anyway, due to the possible loss of precision when using
integer arithmetic.

Note that the CONVERT-TO prohibition on converting floating point to integer is in contrast to the
<Ada type conversion>, in which floating point values may be converted to an integer type. Even
though the CONVERT-TO discussed here operates on <value specification>s, which are program
values rather than database values, it was felt best to establish the same restrictions on <value
specification> CONVERTTOs as on those for <column specification>s and <value
expression>s.

27) The <program variable> of a <target specification> specifies the program variable to which a data-
base value is to be assigned, and the <target specification> is considered typed according to its
<program variable> in order to implement the relevant aspect of Ada/SQL's strong typing.

28) Ada/SOL SR24 and SR25 express two aspects of Ada/SQL's strong typing.

Release I implementations do not support <indicator variable>s. Hence, the optional <indicator
variable> may not be used in a <target specification>.

29) The declaration of an enumeration or unconstrained character string data type declares a <type
mark> denoting the base type. The declaration of an integer, floating point, or constrained charac-
ter string data type, as well as the declaration of a derived data type, declares an anonymous base
type with the <type mark> denoting a subtype (the first-named subtype). Each parameter to an
INTO procedure of the effective Ada declarations is declared using a <type mark> that denotes a
base type or a first-named subtype, which we have called a "data type". Parameters are not declared
for every subtype, since the parameter and result type profile of a subprogram considers only base
type, not subtype. According to Ada rules, the <type mark> of an <out variable> actual

Database Language Ada/SQL
8o

UNCLASSIFIED

parameter to an INTO procedure must conform to the type mark used in declaring the correspond-
ing formal parameter of that procedure. This is the reason that SR26 requires that the <type mark>
denote a data type (base type or first-named subtype).

30) The allowed conversions for an <out variable> containing a <type mark> are in accordance with
Ada type conversion rules. These are different from those of the Ada/SQL CONVERT-TO opera-
tor.

31) The typing rules given in SR28 for an <out variable> containing a <type mark> are consistent with
that construct's interpretation in terms of the effective Ada declarations: a parameter, in the form of
an Ada type conversion, to an effective INTO procedure.

32) The <value expression> division operator raises the DATA..EXCEPTION exception for division
by 0, in contrast to the NUMERIC..ERROR exception required by GR3. Since <value
speciflcation>s contain program values, the standard Ada exception, NUMERIC..-ERROR, is used
for them, rather than DATA..EXCEFTON, which is used for database errors. Also note that the
requirement, of both (R32 and GR3, that the result of an arithmetic operation belong to the Ada
base type of the operands (except for universal data types), is based on Ada arithmetic semantics. It
is highly desirable that an implementation raise NUMRIC..ERROR on computations out of range,
but Ada does not require this, recognizing that detecting overflow may be difficult in some environ-
ments.

33) Arithmetic operators within <value specification>s, which may contain only program values, would
be executed in runtime systems as the standard Ada predefined functions. Consequently, GR4
expresses the Ada rules for expression evaluation. Note that these are different from the Ada/SQL
rules given for <value expression>, which may contain database values, and so must be evaluated
by the database management system.

34) Ada/SQL GR5 describes the Ada order of expression evaluation, which is not the same as that of
ANSI SQL. The properties of the arithmetic operators are such, however, that results should be the
same regardless of which order of evaluation is used.

35) Ada/SQL GR6 is similar to the Ada rules for using variables with undefined values.

36) ANSI SOL <parameter specification>s are not relevant to Ada/SQL.

37) An <indicator specification> need not contain an <indicator value>; this is to allow simple use of
the INDICATOR syntax where required for adherence to other Syntax Rules (see, for example,
Note 24). An <indicator specification> without an <indicator value> indicates a non-null value,

so that INDICATOR (V), where V is a <value specification>, is equivalent to V.

38) In ANSI SOL, the value specified by USER is the <authorization identifier> of the <module> that
is associated with the executing program. This would presumably not change across executions of
the program. To be useful, USER should really specify a value that is indicative of the individual
causing the program to be executed. This is, in fact, what virtually all database management systems
have implemented, and is the subject of a planned revision to the ANSI SQL specification.
Ada/SQL leaves the assignment of <authorization identifier> to program execution as

Common elements
81

UNCLASSIFIED

implementor-defined, so that an Ada/SQL implementation is free to assign a non-varying <aUthori-4 zation identifier> to a program, similar to ANSI SOL, or to return a value truly indicative of the
uiser'.

39) Ada/SQL GR1O expresses the Ada rules for type qualification, as they are relevant to the data types
supported by Ada/SQL. In a runtime implementation, Ada/SQL <Ada type qualification>s would
be actually executed as Ada type qualifications.

40) Ada/SQL GRlI expresses the Ada rules for type conversion, as they are relevant to the data types
supported by Ada/SQL. In a runtime implementation, Ada/SQL <Ada type conversion>s would
be actually executed as Ada type conversions. Note that the Ada rules for type conversion differ
from the Ada/SQL rules described for the CONVERT-TO syntax.

41) The General Rules for <value specification> CONVERT-TO differ from those for <column
specification> and <value expression> CONVERT-TO in that the former requires raising the
DATA.EXCEPTION exception for violations of subtype constraints, whereas the latter merely
states that programs causing subtype constraints to be violated are erroneous. The latter
CONVERTTOs are performed on database values, where subtype constraints are difficult to check
if the database management system does not support such checking. The former CONVERTTOs,
on the other hand, are performed on program values, where subtype checking can readily be accom-
plished.

Release I implementations do not check for CONVERT-TO subtype constraint violations; the
DATA..EXCEPTION exception is not raised.

Note that Ada/SOL character string conversion includes a type conversion for each character in the
string. This is in contrast to Ada type conversion for strings (including that discussed for <Ada
type conversion>, above), which requires that two string types have the same component type in
order to be mutually convertible. The extended Ada/SQL convertibility is provided to match the
functionality of ANSI SOL, in which all character strings are comparable.

42) The data type of an <out variable> must be the same as that of the corresponding database column
from which data is being retrieved. It is possible, however, that values stored in a database not sup-
porting subtype checking may lie outside the range of the appropriate subtype. Although this error
may not be readily detectable when the bogus data are created (if done entirely within the database),
it is easily detected when the data are retrieved. In an implementation that actually executes the
effective Ada declarations, the CONSTRAINT_..ERROR exceptions noted in 8.6 and 8.10 involve
subtype checking on subprogram out parameters. This CONSTRAINT..ERROR checking would
be performed on subprogram return, whereas the DATA-EXCEPTION checking noted in GR14
would be performed in the body of the subprogram. Hence, the DATA-EXCEPTION exception
takes precedence over the CONSTRAINT-ERROR exception.

43) The requirements expressed in GRI5d correspond to the runtime checks performed on Ada array
type conversions, as applicable to character string <out variable>s expressed as Ada type conver-
sions. In an implementation which actually executed the effective Ada declarations, these checks
would be performed at the point of calling an INTO procedure. Failure of any check would raise
CONSTRAINTERROR, without actually calling the procedure. This is the reason that
CONSTRAINT-ERROR here has precedence over DATA-EXCEPTION elsewhere.

Database Language Ada/SQL
82

UNCLASS071ED

4)Athough an <indicator variable> must be of data type INDICATOR..VARIABLE, it is possible
for the variable denoted by the <variable naqme> to belong to a user-defined subtype that does not
include the value to be assigned to the <indicator variable>.

Common elemetnts
83

UNCLASSIFIED

5.7 <column specification>

Function

Reference a named column.

Format

<column specification> ::-
<column specification type conversion>
I[<qualifier> . I <column name>

<column specification type conversion> ::-
CONVERT-TO. <library package name>. <type identifier>
(<column specification>)

<qualifier> ::-
<table name> j <correlation name>

Effective Ada Declarations

type COLUMNSPECIFICATION is private;

type COLUMNSPECIFICATIONINTEGER Is private;

type COLUMNSPECIFICATION_FLOATING Is private;

type COLUMNSPECIFICATIONSTRING Is private;

type COLUMNSPECIFICATION_ENUMERATION is private;

For a program data type ct:

type COLUMNSPECIFICATIONct is private;

For an enumeration data type ct that is not derived from another enumeration type (an ultimate parent
type):

type COLUMNSPECIFICATIONENUMERATION ct is private;

For a column with <column name> c, declared in table t with <authorization " dentifier> a, the follow-
ing functions are effectively declared (1) for references as a <column specification> containing only the
<column names (there may be more than one column named "c"; the following functions are effectively
declared only once for all of them for this purpose), (2) in generic package tLCORRELATION.NAME,
and (3) in generic package a..t..CORRELATION.NAME:

function c return COLUMN-SPECIFICATION;

function c return VALUEEXPRESSION;

Database Language Ada/SQL
84

UKLIASSIFIE)

function c return GROUPBY_CLAUSE;

For a column with <column name> c, of an integer type, declared in table t with <authorization
identifier> a, the following functions are effectively declared (1) for references as a <column
specification> containing only the <column name> (there may be more than one such column named
"c"; the following functions are effectively declared only once for all of them for this purpose), (2) in
generic package tCORRELAIION.NAME, and (3) in generic package atLCORRELATION.NAME:

function c return COLUMNSPECIFICATIONINTEGER;

function c return VALUE EXPRESSIONINTEGER;

For a column with <column name> c, of a floating point type, declared in table t with <authorization
identifier> a, the following functions are effectively declared (1) for references as a <column
specification> containing only the <column name> (there may be more than one such column named
"c"; the following functions are effectively declared only once for all of them for this purpose), (2) in
generic package tCORRELAION.NAME, and (3) in generic package a.tLCORRELATION.NAME:

function c return COLUMNSPECIFICATIONFLOATING;

function c return VALUE EXPRESSIONFLOATING;

For a column with <column name> c, of a character string type, declared in table t with <authorization
identifier> a, the following functions are effectively declared (1) for references as a <column
specification> containing only the <column name> (there may be more than one such column named
"c"; the following functions are effectively declared only once for all of them for this purpose), (2) in
generic package t.CORRELATION.NAME, and (3) in generic package a..LCORRELATION.NAME:

function c return COLUMNSPECIFICATIONSTRING;

function c return VALUE EXPRESSIONSTRING;

For a column with <column name> c, of an enumeration type with ultimate parent type ct, declared in
table t with <authorization identifier> a, the following functions are effectively declared (1) for refer-
ences as a <column specification> containing only the <column name> (there may be more than one
such column named "c"; the following functions are effectively declared only once for all of them for this
purpose), (2) in generic package tCORRELATION.NAME, and (3) in generic package a..-
CORRELATION.NAME:

function c return COLUMNSPECIFICATIONENUMERATION;

function c return COLUMN SPECIFICATION ENUMERATION ct;

function c return VALUE EXPRESSIONENUMERATION;

function c return VALUE EXPRESSION ENUMERATION ct;

For a column with <column name> c, of data type ct, declared in table t with <authorization identifier>
a, the following functions are effectively declared (1) for references as a <column specification> con-
taining only the <column name> (there may be more than one such column named "c"; the following
functions are effectively declared only once for all of them for this purpose), (2) in generic package t-
CORRELATION.NAME, and (3) in generic package a..tLCORRELATON.NAME:

Common elements
85

UNCLASSOE

function c return COLUMNSPECIFICATIONat;

function c return VALUE EXPRESSIONct;

For a column with <column name> c, in table t with <authorization identifier> a (all other <column
name>s within a.t are similarly included in the record type declarations):

type COLUMNSPECIFICATIONUNTYPED_a_t IS
record

C COLUMN_SPECIFICATION;

end record;

function t return COLUMNSPECIFICATIONUNTYPED_a_t;

type VALUE_EXPRESSIONUNTYPED a_t is
record

C VALUE EXPRESSION;

end record;

function t return VALUEEXPRESSIONUNTYPED_a_t;

type GROUP_BY_CLAUSE_a t is
record

C GROUPBYCLAUSE;

end record;

function t return GROUPBYCLAUSE_a_t;

For a column with <column name> c, of an integer type, in table t with <authorization identifier> a (all
other <column name>s within a.t are similarly included in the record type declarations):

type COLUMN_SPECIFICATIONCLASSED a-t Is
record

C COLUMN_SPECIFICATIONINTEGER;

end record;

function t return COLUMNSPECIFICATIONCLASSED_a_t;

type VALUE_EXPRESSIONCLASSED_a_t Is
record

C VALUEEXPRESSIONINTEGER;

end record;

Database Language Ada/SQL
86

UNKUSSIFIED

function t return VALUE-EXPRESSIONCLASSEDa-t;

For a column with <column name> c, of a floating point type, in table t with <authorization identifier>
a (all other <column name>s within a.t are similarly included in the record type declarations):

type COLUMN SPECIFICATIONCLASSED a_t is

record

C COLUMN SPECIFICATIONFLOATING;

end record;

function t return COLUMN SPECIFICATIONCLASSED-a_t;

type VALUEEXPRESSIONCLASSED_a t I s
record

C VALUE_EXPRESSION FLOATING;

end record;

function t return VALUEEXPRESSIONCLASSED_a_t;

For a column with <column name> c, of a character string type, in table t with <authorization
identifier> a (all other <column name>s within a.t are similarly included in the record type declara-
tions):

type COLUMNSPECIFICATION CLASSED_a_t Is

record

C COLUMNSPECIFICATIONSTRING;

end record;

function t return COLUMNSPECIFICATION CLASSED a-t;

type VALUE EXPRESSIONCLASSED_a t Is
record

C VALUEEXPRESSIONSTRING;

end record;

function t return VALUEEXPRESSIONCLASSED_a_t;

For a column with <column name> c, of an enumeration type, in table t with <authorization identifier>
a (all other <column name>s within a~t are similarly included in the record type declarations):

type COLUMNSPECIFICATIONCLASSED_a t is
record

C COLUMNSPECIFICATIONENUMERATION;

Convon eleents
87

'L . .. d m mmm m l

UNCIASSIFIED

end record;

function t return COLUMN_SPECIFICATIONCLASSED_a_t;

type VALUEEXPRESSION CLASSED_a_t Is
record

c VALUEEXPRESSIONENUMERATION;

end record;

function t return VALUEEXPRESSIONCLASSED-a_t;

For a column with <column name> c, of an enumeration type with ultimate parent type ct, in table t
with <authorization identifier> a (all other <column name>s of columns of enumeration types withir
a.t are similarly included in the record type declarations):

type COLUMNSPECIFICATIONCLASSEDENUMERATION_a_t Is

record

c : COLUMNSPECIFICATION ENUMERATIONCt;

end record;

function t return COLUMN_SPECIFICATIONCLASSEDENUMERATIONa_t;

type VALUEEXPRESSIONCLASSEDENUMERATION_a_t Is
record

c VALUEEXPRESSIONENUMERATIONCt;

end record;

function t return VALUEEXPRESSIONCLASSED_ENUMERATION_a_t;

For a column with <column name) c, of data type ct, in table t with
<authorization identifier> a (all other <column name>s within a.t are
similarly included in the record type declarations):

type COLUMN_SPECIFICATIONTYPED a t Is

record

c COLUMN SPECIFICATIONCt;

end record;

function t return COLUMN SPECIFICATIONTYPED_a_t;

type VALUEEXPRESSIONTYPED_a_t Is
record

Database Language Ada/SQL
88

11

IN1XASSIFIED

c VALUEEXPRESSIONct;

end record;

function t return VALUEEXPRESSIONTYPED_at;
4

For a table t with <authorization identifier> a (components for all other other tables with <authoriza-
tion identifier> a are similarly included in the record qpe declarations):

type COLUMNSPECIFICATIONUNTYPEDa Is

record

t COLUMNSPECIFICATIONUNTYPED_a_t;

end record;

function a return COLUMNSPECIFICATIONUNTYPEDa;

type VALUEEXPRESSIONUNTYPED a Is
record

t VALUE_EXPRESSIONUNTYPED_a-t;

end record;

function a return VALUEEXPRESSIONUNTYPED a;

type GROUPBYCLAUSEa is
record

t GROUPBYCLAUSE_a_t;

end record;

function a return GROUPBY CLAUSEa;

type COLUMNSPECIFICATIONCLASSED a is
record

t COLUMNSPECIFICATIONCLASSED_a_t;

end record;

function a return COLUMNSPECIFICATIONCLASSEDa;

type VALUEEXPRESSION CLASSEDa Is

record

t VALUE_EXPRESSIONCLASSED_a t;

end record;

Camuon eleenats
89

UN4ASSIFI]D

function a return VALUEEXPRESSIONCLASSED a;

type COLUMSPECIFICATIONTYPEDa Is

record

t COLUMNSPECIFICATIONTYPED_a_t;

end record;

function a return COLUMNSPECIFICATIONTYPEDa;

type VALUE EXPRESSIONTYPEDa Is
record

t VALUEEXPRESSIONTYPED_a_t;

end record;

function a return VALUEEXPRESSIONTYPED_a;

For a table t with at least one column of an enumeration type, with <authorization identifier> a (com-
ponents for all other tables with at least one column of an enumeration type and <authorization
identifier> a are similarly included in the record type declarations):

type COLUMNSPECIFICATIONCLASSED3ENUMERATIONa Is
record

t COLUMNSPECIFICATION CLASSEDENUMERATION_a_t;

end record;

function a return COLUMNSPECIFICATIONCLASSED ENUMERATION a;

type VALUE EXPRESSIONCLASSEDENUMERATIONa Is
record

t VALUEEXPRESSIONCLASSED_ENUMERATION_a_t;

end record;

function a return VALUE_EXPRESSIONCLASSEDENUMERATION_a;

For an integer program subtype ct defined in library package p, of data type dt (ct may be the same as dr):

package CONVERT-TO Is

package p in

iamcdon ct (LEFT: COLUMNSPECIFICATIONINTEGER)
retwn COLUMNSPECIFICATIONdt;

tincdon ct (LEFT : COLUMN-SPECIFICATIONJINTEGER)

Database Language Ada/SOL
90

UNCLASSIFIED

return COLUMNSPECIFICATION;

function ct (LEFM COLUMNSPECIF1CATIONNTGFR)
return COLUMNSPECIFICATIONINTEGER;

end p;

end CONVERTTO;

For a floating point program subtype ct defined in library package p, of data type dt (ct may be the same
as dt):

package CONVERTTO IS

package p is

function ct (LEFT : COLUMN SPECIFICATIONFLOATING
return COLUMN_SPECIFICATION dt;

function ct (LEFT : COLUMNSPECIFICATIONFLOATING
return COLUMNSPECIFICATION;

function Ct (LEFT : COLUMN SPECIFICATIONFLOATING
return COLUMN SPECIFICATIONFLOATING;

function ct (LEFT : COLUMN-SPECIFICATIONINTEGER.
return COLUMNSPECIFICATION_dt;

function ct (LEFT : COLUMN SPECIFICATIONINTEGER)
return COLUMNSPECIFICATION;

function ct (LEFT : COLUMN SPECIFICATIONINTEGER
return COLUMSPECIFICATIONFLOATING;

end p;

end CONVERT-TO;

For a character string program subtype ct defined in library package p, of data type dt (ct may be the
same ax dt):

package CONVERT-TO is

package p Is

function at (LEFT : COLUMN SPECIFICATIONSTRING)
return COLUMN SPECIFICATION dt;

function ct (LEFT : COLUMN SPECIFICATIONSTRING)
return COLUMN SPECIFICATION;

function at (LEFT COLUMN SPECIFICATION STRING)

Cmmin elements
91

UNC1ASSIFIED

return COLUMNSPECIFICATIONSTRING;

end p;

end CONVERTTO;

For an enumeration program subtype ct defined in library package p, of data type dt with ultimate parent
type pt (ct may be the same as dt, and dt may be the same as pt):

package CONVERTTO is

package p is

function ct (LEFT : COLUMN_SPECIFICATIONENUMERATION pt)
return COLUMNSPECIFICATION_dt;

function ct (LEFT : COLUMNSPECIFICATIONENUMERATIONpt)
return COLUMNSPECIFICATION;

function ct (LEFT : COLUMNSPECIFICATIONENUMERATION-pt)
return COLUMNSPECIFICATIONENUMERATION;

function ct (LEFT : COLUN SPECIFICATIONENUMERATION pt)
return COLUMN_SPECIFICATIONENUMERATIONpt;

end p;

end CONVERT_TO;

Example

CURSOR CURSOR NAME;
BOSSES-NAME : EXAMPLETYPES.ADASQL.BOSS NAME;

package E is new EMPLOYEE_CORRELATION.NAME ('E"); -- employees
package M is new EMPLOYEECORRELATION.NAME (I"); -- managers

DECLAR (CURSOR , CURSORFOR ->
SELEC ('*f,

FROM -> EMPLOYEE,
WHERE -) SALARY) 25000.00)); -- variation: EMPLOYEE.SALARY

DECLAR (CURSOR , CURSORFOR-)
SELEC (E.NAME & E.SALARY & M.NAME a M.SALARY,
FROM - E.EMPLOYEE G M.EMPLOYEE,
WHERE-) EQ (E.MANAGER , M.NAME)
AND E.SALARY) M.SALARY));

DECLAR (CURSOR , CURSORFOR-)
SELEC (NAME a SALARY,
FROM ") EMPLOYEE,
WHERE ") LIKE

Database Language Ada/SQL
92

ENIASSIFIED

(CONVERT._TO.EUX LE _TYPES.BOSSNAME NAME), BOSSESNAME)));

Syntax Rules

1) A <column specification> references a named column. The meaning of a reference to a column
depends on the context.

2) Let C be the <column name> of the <column specification>.

3) Case:

a) f a <column specification> contains a <qualifier>, then the <column specification> shall
appear within the scope of one or more <table name>s or <correlation name>s equal to that
<qualifier>. If there is more than one such <table name> or <correlation name>, then the
one with the most local scope is specified. The table associated with the specified <table
name> or <correlation name> shall include a column whose <column name> is C.

b) If a <column specification> does not include a <qualifier>, then it shall be contained within
the scope of one or more <table name>s or <correlation name>s. Of these, let the phrase
"possible qualifiers" denote those <table name>s and <correlation name>s whose associ-
ated table includes a column whose <column name> is C. There shall be exactly one possible
qualifier with the most local scope, and that <table name> or <correlation name> is impli-
citly specified.

NOTE: The "scope" of a <table name> or <correlation name> is specified in 5.20, "<from
clause>", 8.5, "<delete statement: searched>", 8.11, "<update statement: positioned>", and
8.12, "<update statement: searched>".

4) If a <column specification> is contained in a <table expression> T and the scope of the implicitly
or explicitly specified <qualifier> of the <column specification> is some <SQL statement> or
<table expression> that contains the <table expression> T, then the <column specification> is an
"outer reference" to the table associated with that <qualifier>.

5) A <column specification type conversion> shall only appear within a <distinct set function> or a
<like predicate>.

6) Let T denote the table associated with the explicitly or implicitly specified <qualifier> R. The data
type of a <column specification> not containing a <column specification type conversion> is the
data type of column C of T.

7) The data type of a <column specification type conversion> is that denoted by the <type

identifier>, and shall be an integer, floating point, character string, or enumeration data type.

Case:

a) If the <library package name> is STANDARD, then the <type identifier> shall be declared
within the STANDARD Ada/SQL predefined environment.

Common elements93

UNCLASSIFIED

b) If the library package denoted by the <library package name> is part of the Ada/SQL
predefined environment, then the <type identifier> shall be declared within that library pack-
age.

c) If the library package denoted by the <library package name> is not part of the Ada/SQL
predefined environment, then the <type identifier> shall be declared within the ADA..SQL
nested package of that library package.

8) Case:

a) If the <type identifier> of a <column specification type conversion> denotes an integer data
type, then the <column specification> of that <column specification type conversion> shall
be of an integer data type.

b) If the <type identifier> of a <column specification type conversion> denotes a floating point
data type, then the <column specification> of that <column specification type conversion>
shall be of an integer or a floating point data type.

c) If the <type identifier> of a <column specification type conversion> denotes a character
string data type, then the <column specification> of that <column specification type conver-
sion> shall be of a character string data type.

d) If the <type identifier> of a <column specification type conversion> denotes an enumeration
data type, then the <column specification> of that <column specification type conversion>
shall be of an enumeration data type such that both data types have the same ultimate parent
type.

9) If a <column specification> contains a <qualifier> that is a <table name> containing only a
<table identifier>, then there shall be no other table with the same <table name> declared within
any <schema package> named in the program's <context clause> that contains a column with
<column name> C.

10) If a <column specification> contains only a <column name>, then all columns with that <column
name> C declared within any <schema package> named in the program's <context clause> shall
be of the same data type.

General Rules

1) "C" or "R.C" references column C in a given row of T.

2) The result of a <column specification type conversion> with an argument evaluating to the null
value is the null value. If the subtype denoted by the <type identifier> does not permit null values,
then the program executing the <column specification type conversion> is erroneous.

3) The result of a nonnull <column specification type conversion> is the value of its <column
specification> operand, typed according to the <type identifier>. If the value of the <column

Database Language Ada/SQL
94

UNCLASSIFIED

specification> does not belong to the subtype denoted by the <type identifier>, then the program
executing the <column specification type conversion> is erroneous.

Case:

a) Conversion of an integer value to an integer value shall be exact.

b) Conversion of an integer or a floating point value to a floating point value shall retain at least
the accuracy of the subtype denoted by the <type identifier>.

c) Conversion of a character string value to a character string value shall be as follows:

i) The result character string shall have as many characters as the <column specification>

character string.

Case:

1) If the subtype denoted by the <type identifier> is an unconstrained character
string, then the maximum number of characters in a string of that subtype shall
not be less than the number of characters in the character string <column
specification>, otherwise the program executing the <column specification type
conversion> is erroneous.

2) If the subtype denoted by the <type identifier> is a constrained character string,
then the number of characters in that string subtype shall be the same as the
number of characters in the character string <column specification>, otherwise
the program executing the <column specification type conversion> is erroneous.

i) Successive characters in the result are set to successive characters in the <column
specification>, converted to the component data type of the character string data type
denoted by the <type identifier>. If any character in the <column specification> does
not belong to the component subtype, then the program executing the <column
specification type conversion> is erroneous.

d) Conversion of an enumeration value to another enumeration value shall be according to

matching enumeration literals.

Notes

1) The functions effectively declared for <column specification> have three classes of return type,
based on the context in which the <column specification> appears, as follows:

GROUP.BYCLAUSE class - used in <group by clause>s

VALUE-EXPRESSION class - used in contexts where a <column specification> is used as a
<value expression>

(Common elements
95

UNCLASSIVIED

COLUMNSPECIFICATION class - used in contexts where the syntax explicitly requires a
<column specification>, other than within <value expression> and <group by clause>: <column
specification type conversion>, <distinct set function>, <like predicate>, <null predicate>,
<sort specification>

The GROUP.BYCLAUSE class contains only one type, GROUP.BYCLAUSE.

The VALUE-EXPRESSION class contains four subclasses of return type, based on the context in
which the <value expression> containing the <column specification> appears. The subclass
names and the contexts are the same as the class names and contexts for <value expression>, as
described in Note 1 of section 5.9. Lists of contexts in which each subclass of return type is
effectively used for a <value expression> that is a <column specification> can therefore be found
in that Note; only brief descriptions of those contexts are given here. The four subclasses of return
type, and the contexts in which they are used, are:

VALUE.EXPRESSION - used in contexts where the data type of the <column specification> is
not important for the effective Ada declarations.

VALUE.EXPRESSIONct (typed according to program type) - used in contexts where the result of
the <column specification> will be used in an operation for which the effective Ada declarations
are defined with strongly-typed operands.

VALUEEXPRESSIONx, where x is INTEGER, FLOATING, STRING, or
ENUMERATION.ct, where ct is the name of an enumeration data type not derived from any other
enumeration type (an ultimate parent type) - used in contexts where the result o. the <column
specification> is the operand of a CONVERT-TO.

VALUEEXPRESSIONy, where y is INTEGER, FLOATING, STRING, or ENUMERATION -
used in contexts where the result of the <column specification> will be used in an operation with
only one operand, where the type class (integer, floating point, character string, or enumeration) of
the operand is important, and where the context of the operation is such that the function effectively
declared for it returns a result of type VALUEEXPRESSION or VALUE_,EXPRESSIONy (i.e.,
not strongly typed and not CONVERT-TO). Note that three of the same types
(VLUEEXPRESSIONJNTEGER, VALUE-EXPRESSIONFLOATING, and
VALUEEXPRESSIONSTRING) are used for both this subclass and the previous subclass, so
the effective <column specification> functions with those return types apply to both subclasses.

The COLUMNSPECIFICA1ION class contains four subclasses of return type, based on the con-
text in which the <column specification> appears, as follows:

COLUMNSPECIFICATION - used in contexts where the data type of the <column
specification> is not important for the effective Ada declarations. Relevant contexts immediately
containing <column specification>:

COUNT-DISTINCT <distinct set function> (the operand need not be strongly typed; the result is

always of type DATABASE.INT)

<null predicate>

<sort specification>

Database Language Ada/SQL
96

UNCLASSIFIED

COLUMNSPECIFICATIONct (typed according to program type) - used in contexts where the
result of the <column specification> will be used in an operation for which the effective Ada
declarations are defined with strongly-typed operands. Relevant contexts immediately containing
<column specification>:

<distinct set function>, other than COUNT-DISTINCT, when it is in a context requiring strong
typing (the function effectively declared for the <distinct set function> returns a result of type
VALUEXPRESSION_-ct)

<like predicate>

COLUMNSPECIFICATION..j, where x is INTEGER, FLOATING, STRING, or
ENUMERATIONct, where ct is the name of an enumeration data type not derived from any other
enumeration type (an ultimate parent type) - used when the result of the <column specification> is
the operand of a <column specification type conversion>.

COLUMNSPECIFICATION.y, where y is INTEGER, FLOATING, STRING, or ENUMERA-
TION - used when the <column specification> is the operand of a <distinct set function>, other
than COUNT.DISTINCT, that is itself used in a context such that the function effectively declared
for it returns a result of type VALUE.EXPRESSION or VALUE..EXPRESSIONy (i.e., not
strongly typed and not CONVERT-TO). Note that three of the same types (COLUMN_-
SPECIFICATIONJNTEGER, COLUMN.SPECIFICATIONFLOATING, and COLUMN-.
SPECIFICATIONSTRING) are used for both this subclass and the previous subclass, so the
effective <column specification> functions with those return types apply to both subclasses.

2) The generic packages LCORRELATION.NAME and atLCORRELATION.NAME are used to
declare <correlation name>s for table a.t. For example, the <correlation name> cn may be
declared as:

package cn is new LCORRELATION.NAME ("cn"); or

package cn is new a.tCORRELATION.NAME ("cn");

The <column specification> cn.c effectively calls one of the c functions declared within the generic
package, to return the appropriately typed value representing the <column specification>.

Release I implementations do not support <authorization identifier>s within <table name>s.
Hence, only generic package tCORRELATION.NAME is available for table t.

3) The <column specification> t.c effectively calls one of the t functions to return a value of a record
type; then selects the c component of this value, which is the appropriately typed value representing
the <column specification>.

4) The <column specification> a.t.c effectively calls one of the a functions to return a value of a
record type; then selects the t component of this value, which is also of a record type; then selects
the c component of that record value, which is the appropriately typed value representing the
<column specification>.

Release 1 implementations do not support <authorization identifier>s within <table name>s.
Hence, no a functions are effectively declared.

Common elements
97

UNCLASSIFIED

5) There are several CONVERT-TO functions effectively declared for each subtype, ct, to which a
value may be converted. These return a value typed in one of the COLUMNSPECIFICAION
subclasses, as described in Note 1, above. The <column specification> CONVERT-TO functions
are different from those defined for <value expression> in 5.9, since the former are used in contexts
where only a <column specification> is permitted, while the latter are used in contexts where any
type of <value expression> is permitted by the BNF.

The effective type of the parameter to each of the CONVERT-TO functions denotes the classes of
data types that may be converted to the target data type. Thus, only integer values may be converted
to an integer data type, either integer or floating point values may be converted to a floating point
data type, and only string values may be converted to a string data type. Enumeration data types are
themselves divided into classes, since (by Ada rules) a conversion is allowed from an operand type
to a target type if one of the two types is derived from the other, directly or indirectly, or if there
exists a third type from which both types are derived, directly or indirectly. This enables enumera-
tion types to be partitioned into classes, with types in the same class being mutually convertible
while those in different classes are not. Within each clas there exists a data type that is not a
derived type; all other types in the class are derived, directly or indirectly, from it. We use this so-
called ultimate parent type to designate the class.

We have elected to type the parameter of effective CONVERT-TO functions according to the
appropriate data type class. It would also be feasible to strongly type the parameter according to the
actual data type of the operand being converted. An implementation which generates all possible
effective Ada/SOL declarations based on the type declarations contained in a <schema> would
then have to generate order(n*02) functions, however, where n is the number of different data types
declared. By using type classes, the number of functions that must be generated is order(n).

6) The Ada/SQL <column specification> conforms to the ANSI SQL <column specification>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
SRI-SR2 SRI-SR2 -

S3 SR3 7
§R4 SR4 -

- I SR5 8
SR5 SR6 -

- SR7 9
- R8 10

- SR9 11
-- SR10 12

GR1 GR1

- GR2-GR3 13

7) The last sentence of ANSI SOL SR3b reads "... and that <table name> or <qualifier> is implicitly
spec~ified." In Ada/SRL SR3b, <correlation name> is substituted for <qualifier>, since this is
really what appears to be intended in the ANSI rule.

Database Language Ada/SQL
98

UNCLASSIFIED

8) <column speciflcation>s contained in <group by clause>s, <null predicate>s, and <sort
specification>s are considered untyped, and so may not have <column specification type
convendon>s applied to them. Ty'pe conversions may be applied to <column specification>s con-
tained within <value expression>s by using the CONVERT-TO syntax defined for <value expres-
sion>, which happens to be the same as that defined for <column specification type conversion>.
Not allowing <column specification type conversion>s to appear within <value expression>s is
merely a syntactic device to avoid parsing ambiguity; the language would look the same whether it
were permitted or not.

9) Based on the SDL syntax rules, the expanded name of a user-defined subtype denoted by a <type
identifier> is <library package name> .ADA..SQL. <type identifier>. The designation of a
CONVERT-TO for that subtype is, however, CONVERTTO.<hbrary package name>.<type
identifier>, omitting the ADA..SQL. Omitting the ADA..SQL does not introduce any ambiguities,
because the only <type identifier>s contained in the named library package that may be referenced
in a CONVERT-TO are those defined in the ADA..SQL nested package.

10) CONVERT-TO is designed such that only types of the same class are mutually convertible: numer-
ics to numerics, character strings to character strings, and enumerations to enumerations with the
same ultimate parent type. Numerics are not totally mutually convertible, however. Although both
integer and floating point values can be convened to a floating point type, only integer values can be
converted to an integer type. Why not permit a floating point value to be converted to an integer
type, particularly since "all numbers are comparable" in ANSI SQL? The ANSI comparability
statement notwithstanding, ANSI SOL does not permit approximate numeric values (the analog of
Ada/SOL floating point) to be assigned to exact numeric (a superset of Ada/SOL integers) database
columns or program variables. To enforce this restriction in Ada/SQL, CONVERT-TO is not
allowed from a floating point value to an integer type. The net result is that any computations involv-
ing both integer and floating point values must be done in a floating point type. This would most
likely be the desired mode anyway, due to the possible loss of precision when using integer arith-
metic.

Note that the CONVERT-TO prohibition on converting floating point to integer is in contrast to
Ada type conversion (including as discussed with <value specification>), in which floating point
values may be converted to an integer type.

11) Ada/SQL SR9 pertains to tables named with the same <table identifier> but with different
<authorization identifier>s. Consider column c declared in table ti with <authorization
identifier> al, and column c declared in table tl with <authorization identifier> a2. An implemen-
tation which generates all effective Ada declarations must generate, for example, the following:

type VALUEEXPRESSIONUNTYPED al t Is

record

a VALUEEXPRESSION;

end record;

function t return VALUEEXPRESSIONUNTYPED al-t;

type VALUE EXPRESSIONUNTYPED a2_t Is
record

CAnsU elements
99

LNCASSIFIED

C VALUEEXPRESSION;

end record;

function t return VALUEEXPRESSIONUNTYPEDa2_t;

In a context where a value of effective type VALUEEXPRESSION is required, as in the <select
statement> fragment violating SR9 shown below, the required effective function t to use for the
<column specification> t.c is not uniquely determined:

SELEC (t.c & .

To comply with SR9, an <authorization identifier> must be used within the <table name> of the
<column specification>, as in:

SELEC (al.t.c & .

12) Consider column c declared in table tl of integer data type ctl, and column c declared in table t2 of
integer data type ct2, which is different from ctl. An implementation which generates all effective
Ada declarations must generate, for example, the following two functions:

function 0<0 (LEFT : VALUEEXPRESSION ctl ; RIGHT ctl)
return SEARCH CONDITION;

function "(0 (LEFT VALUE_EXPRESSIONct2 ; RIGHT ct2)

return SEARCH-CONDITION;

function c return VALUE EXPRESSION-ctl;

function c return VALUE_EXPRESSION ct2;

Now, since 0 is a valid literal of both types ctl and ct2, the required effective functions in the follow-
ing <search condition>, which violates SR1O, are not uniquely determined:

SC < 0 ...

To comply with SR10, a <qualifier> must be used in the <column specification>, as in:

. tl.c < 0 .

13) Unless the database supports subtype checking, it is possible to use CONVERT-TO on a value not
belonging to the subtype denoted by the <type identifier>; requiring checking for this condition
could have an unacceptable performance impact on an Ada/SQL system. For this reason, GR3
states that programs performing bogus type conversions are erroneous. An implementation that can
support database subtype checking may raise the DATA-EXCEPTION exception upon detecting a
subtype constraint violation.

Note that Ada/SQL character string conversion includes a type conversion for each character in the
string. This is in contrast to Ada type conversion for strings (including that discussed with <value
specification>), which requires that two string types have the same component type in order to be

Database Language Ada/SQL
100

UNCLASSIFIED

mutually convertible. The extended Ada/SQL convertibility is provided to match the functionality
of ANSI SQL, in which all character strings are comparable.

Common elements
101

UNCLASSIFIED

5.8 <set function specification>

Function

Specify a value derived by the application of a function to an argument.

Format

<set function specification> ::-
) I T(,,)ICOUNT-ALL(,,)

I <distinct set function> I <all set function>

<distinct set function> ::-
{ AVG-DISTINCT I MAXDISTINCT I MINDISTINCT I SUM-DISTINCT
I COUNT-DISTINCT } (<column specification>)

<all set function> ::=
{ AVG I MAX I MIN I SUM I AVG-ALL I MAX-ALL I MIN-ALL I SUM-ALL)

(<value expression>)

Effective Ada Declarations

-- see 8.10 for declaration of type STARTYPE

-- VALUEEXPRESSIONDATABASEINT is defined for predefined type DATABASE. INT
-- in accordance with 5.9 - For a program data type ct:
-- type VALUEEXPRESSIONct Is private;

function COUNT (STAR STAR-TYPE) return VALUEEXPRESSION;

function COUNT (STAR : STAR-TYPE) return VALUEEXPRESSIONINTEGER;

function COUNT (STAR : STAR-TYPE) return VALUE_EXPRESSIONDATABASEINT;

function COUNT-ALL (STAR : STARTYPE) return VALUEEXPRESSION
renums COUNT;

function COUNT ALL (STAR : STARTYPE) return VALUEEXPRESSIONINTEGER
renunes COUNT;

function COUNT ALL (STAR STARTYPE)
return VALUEEXPRESSION DATABASEINT renumes COUNT;

function AVGDISTINCT (COLUMN COLUMNSPECIFICATIONINTEGER)
return VALUEEXPRESSION;

function AVGDISTINCT (COLUMN COLUMN SPECIFICATIONINTEGER)
return VALUEEXPRESSION.INTEGER;

function AVGDISTINCT (COLUMN : COLUMNSPECIFICATIONFLOATING

Database Language Ada/SQL
102

UNCLASSIFIED

return VALUEEXPRESSION;

function AVGDISTINCT (COLUMN : COLUMNSPECIFICATIONFLOATING
return VALUEEXPRESSION FLOATING;

funetion MAX-DISTINCT (COLUMN COLUWSPECIFICATION_INTEGER
return VALUE-EXPRESSION;

function MAXDISTINCT (COLUMN COLUMNSPECIFICATIONINTEGER
return VALUEEXPRESSIONINTEGER;

function MAXDISTINCT (COLUMN COLUMNSPECIFICATIONFLOATING
return VALUE-EXPRESSION;

function MAX DISTINCT (COLUMN COLUMNSPECIFICATION FLOATING
return VALUE EXPRESSIONFLOATING;

funetion MAXDISTINCT (COLUMN COLUMNSPECIFICATION STRING
return VALUE-EXPRESSION;

function MAXDISTINCT (COLUMN COLUMNSPECIFICATION ENUMERATION
return VALUE_EXPRESSION;

function MINDISTINCT (COLUMN COLUMNSPECIFICATION INTEGER)
return VALUEEXPRESSION;

funetion KINDISTINCT (COLUMN COLUMNSPECIFICATION INTEGER)
return VALUEEXPRESSIONINTEGER;

function MINDISTINCT (COLUMN COLUMN SPECIFICATION FLOATING)
return VALUEEXPRESSION;

function MIN DISTINCT (COLUMN COLUMNSPECIFICATION FLOATING)
return VALUEEXPRESSIONFLOATING;

function MINDISTINCT (COLUMN COLUMNSPECIFICATION-STRING
return VALUEEXPRESSION;

function MINDISTINCT (COLUMN COLUMNSPECIFICATION ENUMERATION
return VALUEEXPRESSION;

funetion SUMDISTINCT (COLUMN COLUMNSPECIFICATION INTEGER)
return VALUEEXPRESSION;

function SUM _DISTINCT (COLUMN COLUMN SPECIFICATION INTEGER)
return VALUEEXPRESSION INTEGER;

function SUMDISTINCT (COLUMN COLUMN SPECIFICATION FLOATING)
return VALUEEXPRESSION;

function SUM_DISTINCT (COLUMN COLUMNSPECIFICATION FLOATING)
return VALUEEXPRESSIONFLOATING;

Cnmmn elements
103

LNASSIFIED

function COUNT-DISTINCT (COLUMN COLUMNSPECIFICATION)
return VALUE-EXPRESSION;

function COUNTDISTINCT (COLUMN COLUMN-SPECIFICATION)
return VALUE EXPRESSIONINTEGER;

function COUNTDISTINCT (COLUMN COLUMNSPECIFICATION)
return VALUE EXPRESSION DATABASEINT;

function AVG (VALUE VALUE_EXPRESSIONINTEGER) return VALUEEXPRESSION;

function AVG (VALUE VALUE EXPRESSIONINTEGER)
return VALUE EXPRESSIONINTEGER;

function AVG (VALUE VALUEEXPRESSIONFLOATING) return VALUE-EXPRESSION;

function AVG (VALUE VALUEEXPRESSIONFLOATING)
return VALUE EXPRESSIONFLOATING;

function MAX (VALUE VALUEEXPRESSIONINTEGER) return VALUEEXPRESSION;

function MAX (VALUE VALUE_EXPRESSION INTEGER)
return VALUE EXPRESSIONINTEGER;

function MAX (VALUE VALUEEXPRESSION FLOATING) return VALUEEXPRESSION;

function MAX (VALUE VALUEEXPRESSIONFLOATING)
return VALUE EXPRESSIONFLOATING;

function MAX (VALUE VALUE_EXPRESSION STRING) return VALUEEXPRESSION;

function MAX (VALUE VALUEEXPRESSION ENUMERATION
return VALUEEXPRESSION;

function MIN (VALUE VALUE_EXPRESSIONINTEGER) return VALUEEXPRESSION;

function MIN (VALUE VALUEEXPRESSION INTEGER)
.return VALUE EXPRESSIONINTEGER;

function KIN (VALUE VALUE-EXPRESSIONFLOATING) return VALUEEXPRESSION;

function MIN (VALUE VALUE EXPRESSIONFLOATING)
return VALUE_EXPRESSIONFLOATING;

function MIN (VALUE VALUEEXPRSSIONSTRING) return VALUEEXPRESSION;

function MIN (VALUE VALUE-EXPRESSIONENUMERATION)
return VALUE_EXPRESSION;

function SUM (VALUE VALUE EXPRESSION INTEGER) return VALUEEXPRESSION;

function SUM (VALUE VALUEEXPRESSIONINTEGER)

Database Language Ada/SOL
104

INCASSIFIE

return VALUE EXPRESSIONINTZGER;

function SUM (VALUE : VALUEEXPRESSION FLOATING) return VALUE EXPRESSION;

function SUM (VALUE : VALUEIE XPRESSIONFLOATING)
return VALUE EXPRESSIONFLOATING;

function AVGALL (VALUE : VALUEEXPRESSIONINTEGER)
return VALUE EXPRESSION reamsme AVG;

function AVGALL (VALUE : VALUEEXPRESSION-INTEGER)
return VALUE-EXPRESSIONINTEGER ream s AVG;

function AVGALL (VALUE : VALUE_EXPRESSIONFLOATING)
return VALUEEXPRESSION resms AVG;

function AVGALL (VALUE : VALUE_EXPRESSIONFLOATING)
return VALUE EXPRESSIONFLOATING reams AVG;

function MAXALL (VALUE : VALUEEXPRESSIONINTEGER)
return VALUE-EXPRESSION reams MAX;

function MAXALL (VALUE : VALUEEXPRESSIONINTEGER)
return VALUE-EXPRESSION INTEGER ream s MAX;

functien MAXALL (VALUE : VALUE_EXPRESSIONFLOATING)
return VALUEEXPRESSION reams MAX;

function MAXALL (VALUE : VALUEEXPRESSIONFLOATING)
return VALUEEXPRESSION FLOATING reams MAX;

function MAXALL (VALUE : VALUEEXPRESSION STRING
return VALUE EXPRESSION resume MAX;

function MAX ALL (VALUE : VALUEEXPRESSION ENUMERATION
return VALUEEXPRESSION rename MAX;

function MINALL (VALUE : VALUEEXPRESSIONINTEGER)
return VALUEEXPRESSION renma MIN;

function MINALL (VALUE : VALUEEXPRESSIONINTEGER)
return VALUEEXPRESSION INTEGER reams MIN;

function MIN ALL (VALUE : VALUEEXPRESSIONFLOATING)
return VALUEEXPRESSION renames MIN;

function MIN-ALL (VALUE • VALUEEXPRESSIONFLOATING)
return VALUEEXPRESSION FLOATING reams MIN;

function MIN ALL (VALUE - VALUEEXPRESSIONSTRING
return VALUEEXPRESSION rename MIN;

1C0nnn elemts! 1o5

04a.SSIFIED

function MIN ALL (VALUE : VALUE EXPRESSIONENUMERATION
return VALUEEXPRESSION renmes MIN;

function SUN ALL (VALUE : VALUEEXPRESSIONINTEGER)
return VALUEEXPRESSION renansa SUM,

funetion SU14 ALL (VALUE : VALUE-EXPRESSIONINTEGER)
return VALUEEXPRESSIONINTEGER renmas SUM;

function SUM-ALL (VALUE : VALUE EXPRESSIONFLOATING)
return VALUE EXPRESSION reuas SUM,

function SUM ALL (VALUE : VALUE EXPRESSIONFLOATING)
return VALUEEXPRESSIONFLOATING remams SUM;

For an integer or floating point program data type ct:

function AVG DISTINCT (COLUMN COLUMNSPECIFICATIONct)
return VALUEEXPRESSION ct;

funetion SUM-DISTINCT (COLUMN COLUMNSPECIFICATION.ct)
return VALUE_EXPRESSIONat;

function AVG (VALUE VALUEEXPRESSION at) return VALUEEXPRESSIONct;

funetion SUM (VALUE VALUEEXPRESSION-cat) return VALUEEXPRESSIONCt;

function AVG ALL (VALUE : VALUEEXPRESSION-ct)
return VALUEEXPRESSIONat renmine AVG;

function SU14ALL (VALUE : VALUEEXPRESSION-ct)
return VALUEEXPRESSIONat remina SUM;

For an integer, floating point, character string, or enumeration program
data type ct:

funetion MAX-DISTINCT (COLUMN COLUMNSPECIFICATION-ct)
return VALUEEXPRESSION-at;

function MIN-DISTINCT (COLUMN COLUMNSPECIFICATION-at)
return VALUEEXPRESSIONat;

function MAX (VALUE VALUE_EXPRESSION at) return VALUEEXPRESSIONct;

fuetion KIN (VALUE VALUEEXPRESSIONat) return VALUEEXPRESSION_t;

function MAX-ALL (VALUE - VALUEEXPRESSIONat)
return VALUEEXPRESSION at renmnea MAX;

function MIN ALL (VALUE : VALUEEXPRESSION ct)
return VALUEEXPRESSIONct renma MIN;

Database Language Ada/SQL
106

UNCLASSIFIED

For an enumeration data type ct that is not derived from another enumeration
type (an ultimate parent type):

function MAX_DISTINCT (COLUMN : COLUMNSPECIFICATIONENLERATIONct)
return VALU EEXPRESSION D ZPJMERATIONt;

function MINDISTINCT (COLUMN : COLUMNSPECIFICATIONENUMERATIONCt)
return VALUE XPRESSIONENUMERATIONct;

function MAX (VALUE : VALUEEXPRESSIONENUMERATIONet)
return VALUE EXPRESSION ENUMERATIONct;

function MIN (VALUE : VALUE EXPRESSIONENUMERATIONct)
return VALUE EXPRESSIONENUMERATIONat;

function MAXALL (VALUE : VALUEEXPRESSIONENUMERATIONct)
return VALUE EXPRESSIONENUMRATIONct rensma MAX;

function MINALL (VALUE : VALUE_EXPRESSION ENUMERATIONct)

return VALUEEXPRESSION ENUMERATIONct renames MIN;

Example

NUMBER DATABASE. INT;

AVERAGE EMPLOYEE_SALARY;

SELEC (COUNT ("'), -- variation: COUNT ALL

FROM -) EMPLOYEE);
INTO (NUMBER };

SELEC (COUNTDISTINCT (MANAGER)
FROM-) EMPLOYEE);
INTO (NUMBER);

SELEC (AVGDISTINCT (SALARY), -- variations: MAXDISTINCT, MINDISTINCT,

FROM -) EMPLOYEE); SUMDISTINCT
INTO (AVERAGE);

SELEC (AVG (SALARY), -- variations: MAX, MIN, SUM, AVGALL, MAXALL,
FROM-) EMPLOYEE); MIN-ALL, SUMALL

INTO (AVERAGE);

Syntax Rules

1) The argument of COUNT ('*') or COUNTALL ('*'), and the argument source of a <distinct set
function> and <al set function> is a table or a group of a grouped table as specified in 5.19,
"<table expression>", 5.24, "<subquery>", and 5.25, "<query specification>".

2) Let R denote the argument or argument source of a <set function specification>.

Common elements
107

UNCLASSIFIED

3) The <column specification> of a <distinct set function> and each <column specification> in the
<value expression> of an <all set function> shall unambiguously reference a column of R and shall
not reference a column derived from a <set function specification>.

4) The <value expression> of an <all set function> shall include a <column specification> that refer-
ences a column of R and shall not include a <set function specification>. If the <column
specification> is an outer reference, then the <value expression> shall not include any operators.

NOTE: "Outer reference" is defined in 5.7, "<column specification>".

5) If a <set function specification> contains a <column specification> that is an outer reference, then
the <set function specification> shall be contained in a <subquery> of a <having clause>.

NOT& "Outer reference" is defined in 5.7, "<column specification>".

6) Let T be the data type of the values that result from evaluation of the <column specification> or
<value expression>.

7) If COUNT, COUNT-ALL, or COUNT-DISTINCT is specified, then the data type of the result of

a <set function specification> is DATABASE.INT.

8) If MAX, MN, MAX-ALL, or MIINALL is specified, then the data type of the result is T.

9) If SUM, AVG, SUM_ALL, or AVG-ALL is specified, then:

a) T shall not be character string or enumeration.

b) The data type of the result is T.

General Rules

1) The argument of a <distinct set function> is a set of values. The set is derived by the elimination of
any null values and any redundant duplicate values from the column of R referenced by the
<column specification>.

2) The argument of an <all set function> is a multi-set of values. The multi-set is derived by the elimi-
nation of any null values from the result of the application of the <value expression> to each row of
R. The use or non-use of the ..ALL suffix does not affect the meaning of an <all set function>.

3) Let S denote the argument of a <distinct set function> or an <all set function>.

4) Case:

a) If the <distinct set function> COUNT-DISTINCT is specified, then the result is the cardi-
nality of S.

Database Language Ada/SQL
108

UNCLASSIFIED

b) If COUNT(') or COUNTALL('')is specified, then the result is the cardinality of R.

c) If AVG, MAX, MIN, or SUM (with or without -DISTINCT or -ALL suffix) is specified and
S is empty, then the result is the null value.

d) If MAX or MIN (with or without .DISTINCT or -ALL suffix) is specified, then the result is
respectively the maximum or minimum value in S. These results are determined using the
comparison rules specified in 5.11, "<comparison predicate>".

e) If SUM (with or without -DISTINCT or -ALL suffix) is specified, then the result is the sum
of the values in S. The sum shall be within the range of the base type of the result; otherwise,
the program causing the <set function specification> to be evaluated is erroneous.

i) An integer result shall be exact.

ii) A floating point result shall be correct to the accuracy of its data type.

f) If AVG (with or without -DISTINCT or -ALL suffix) is specified, then the result is the aver-
age of the values in S. The sum of the values in S shall be within the range of the base type of
the result; otherwise, the program causing the <set function specification> to be evaluated is
erroneous.

i) An integer result is carried forward to an implementor-defined number of decimal
places, including at least all digits to the left of the decimal point. Such results may be
used as "integer" operands to other operators, and the number of decimal places car-
ried forward may affect the ultimate result of chains of operations. Any program whose
effect depends on the number of decimal places carried forward is erroneous. When
assigned to an integer <program variable> or database column, such an "integer" result
is rounded to the nearest integer. A result that is halfway between two integers may be
rounded either up or down. Any program whose effect depends on the direction of
rounding of results halfway between two integers is erroneous.

ii) A floating point result shall be correct to the accuracy of its data type.

Notes

1) The functions effectively declared for <set function specification> have four classes of return type,
based on the context in which the <set function specification> appears. The class names and the
contexts are the same as for <value expression>, as described in Note I of section 5.9, since <value
expression> is the only production symbol containing <set function specification>. Lists of con-
texts in which each class of return type is effectively used for a <set function specification>, as
immediately contained in a <value expression>, can therefore be found in that Note; only brief
descriptions of those contexts are given here. The four classes of return type, and the contexts in
which they are used, are:

VALUIEXPRESSION - used in contexts where the data type of the <set function specification>
is not important for the effective Ada declarations.

Common elements
109

UNCLASSIED

VALUE..EXPRSSIONct (typed according to program type) - used in contexts where the result of
the <set function specification> will be used in another operation for which the effective Ada
declarations are defined with strongly-typed operands.

VALU.EXPRESSION_x, where x is INTEGER, FLOATING, STRING, or
ENUEERATION.ct, where ct is the name of an enumeration data type not derived from any other
enumeration type (an ultimate parent type) - used in contexts where the result of the <set function
specification> is the operand of a CONVERTTO.

VALUE..EXPRESSIONy, where y is INTEGER or FLOATING - used in contexts where the
result of the <set function specification> must be of a numeric (integer or floating point) data type
because it is used as the operand of a monadic + or - operator, whose context is such that the func-
tion effectively declared for it returns a result of type VALUE-EXPRESSION or
VALUE.EXPRESSION...-y Note that the VALUE.EP SIONINTEGER and
VALUE-EXPRESSIONFLOATING types are used for both this class and the previous class.
Also note that this class, as defined for <value expression> in Note 1 of 5.9, also includes types
VALUEEXPRESSIONSTRING and VALUE.EXPRESSIONENUMERATION. These types
are applicable only to a <value expression> contained in an <all set function>. Although a general
<value expression> may be contained in an <all set function>, a <set function specification> can-
not be, since SQL prohibits nesting of <set function specification>s. Thus, these latter types are
not applicable to <set function speciflcation>s.

Although the return types contained in class VALUEEXPRESSIONy for <set function
specification>s are a subset of those contained in class VALUEEXPRESSION..x, the two classes
are discussed separately below, because parameters to the effective Ada functions declared for <set
function specification>s can be of all types listed for VALUE-EXPRESSION-y in Note I of 5.9.
Thus, the class of the type, as determined by the context in which the <set function specification>
appears, is important to the discussion, even if the same actual effective subprogram is used for two
different classes. For example, a single effective <set function specification> subprogram may be
applicable to type VALUEEXPRESSIONJINTEGER, whether that type is considered to be of
class VALU&LEXPRESSIONx or VALUEYXPRESSION-y.

2) The overloaded functions effectively declared for <set function speciflication>s have eight different
types of operands. The effective type of the function parameter is based on the text of the
corresponding <set function specification> and its context, as follows (the context is indicated in
terms of the return class of the effective function, as described in Note 1):

STAR-TYPE - used for COUNT ('*') and COUNT_ALL ('*'); return type of any of the four
classes; the type of the result of these counts is DATABASE.INT

COLUMNSPECIFICAIONx - used for <distinct set function>s other than
COUNT-DISTINCT where the result type will be of class VALUEEXPRESSIONx (note that the
effective parameter type reflects the fact that the argument to a <distinct set function> is restricted
to be only a <column specification>)

COLUMNSPECIFICATIONy - used for <distinct set function>s other than
COUNT-DISTINCT where the result type will be of class VALUE.EXPRESSION or
VALUEEXPRESSION-y

COLUMNSPECIFICATIONct - used for <distinct set function>s other than
COUNT-DISTINCT where the result type will be of class VALUEEXPRESSIONct

Database Language Ada/SQL
110

UNCLASSIFIED

COLUN_SIECIFICAION - used for COUNTDISTINCT; return type of any of the four
classes - the parameter to COUNT-DISTINCT does not require strong typing because the type of
the result is always DATABASE.INT

VALU&EXPRESSION.x - used for <all set function>s where the result type will be of class
VALUE...EXPRESSION..x

VALUE..EXPRESSIONy - used for <all set function>s where the result type will be of class
VALUE-EXPRESSION or VALU&EXPRESSION.y

VALUE-EXPRESSIONct - used for <all set funcion>s where the result type will be of class
VALUEEXPRESSIONct

3) The Ada/SQL <set function specification> conforms to the ANSI SOL <set function
specification>. The correspondence between Ada/SOL rules and ANSI SOL rules is as follows:

ANSI SOL Ada/SQL See Notes

SRI SRI 4
SR2-SR6 SR2-SR6 -

SR7 SR7 5
SR8 SR8 -

SR9 §R9 6
GRI-GR3 GR1-GR3 -

GR4 GR4 7

4) COUNT-ALL is provided as a synonym for COUNT because the COUNT name may conflict with
the identical type names declared in TEXTIJO and DIRECT.JO.

5) To apply Ada/SQL's strong typing to the result of a COUNT, COUNT-ALL, or
COUNTDISTINCT operation, it is necessary to specify a data type for the result. This is always
taken to be DATABASE.INT, which is guaranteed to have a range large enough to accommodate
any possible database counts.

6) The ANSI prohibition on applying SUM or AVG to character strings is extended to enumeration
data types in Ada/SOL. Ada/SQL SR9 includes specification of strong typing.

7) ANSI SOL allows the precision of SUM and AVG operations to be implementor-defined; Ada/SQL
also allows this, but requires that the precision be at least that of the data type for which the opera-
tion is being performed.

ANSI SOL GR4 requires that the sums used in computing SUM and AVG be within the range of the
data type of the result. Since Ada/SQL's concept of a data type includes a possible subtype con-
straint, we merely require that the sum be within the range of the base type, which does not include
the subtype constraint. Implementations may raise the DATA.EXCEPTION exception if they

Common elements
ill

UNCLASSIFIED

detect a sum out of range; we say that a program causing such an error is erroneous because there
may be implementations that cannot readily detect the error.

ANSI SOL does not specify the precision of the result of an integer AVG. If such values are used as
operands to other arithmetic operations, the final result may differ depending on the accuracy to
which intermediate results are carried; see Note 17 in 5.9. Since ANSI SQL does not require any
particular precision for the result of an AVG, Ada/SQL cannot either, although we do require that
the result be correct to at least the nearest integer. We also note that a program whose effect
depends on the precision of a particular implementation is erroneous.

8) Release 1 implementations do not support <distinct set function>s or the COUNT.ALL synonym
for COUNT.

Database Language Ada/SQL
112

L" ',rmsu~ssm sm

UNCLASSIFIED

5.9 <value expresson)

Function

Specify a value.

Format

<value expression> ::
[+ I-] <term>

I <value expression> + <term>
<value expression> - <term>

<termi> ::-
<factor>
<term> 0 <factor>
<term> I <factor>

<factor> ::- <primary>

<primary> ::-
<value specification>
<column specification>
<set function specification>

I [CONVERT-TO. <library package name>. <type identifier>]
(<value expression>)

Effective Ada Declarations

type VALUEXPRESSION is private;

type VALUEZXPESSION.INTEGER Is private;

type VALUE3XPRESSION_FLOATING is private;

type VALUEEXPRESSIONSTRING IS private;

type VALUEEXPRESSION_ENUMERATION In private;

function "+" (LEFT VALUEEXPRESSIONJINTEGER) return VALUEEXPRESSION;

function 0+0 (LEFT VALUEEXPRESSION INTEGER)
return VALUEEXPRESSIONINTEGER;

function '+" (LEFT VALUEEXPRESSION FLOATING) return VALUE-EXPRESSION;

function "+" (LEFT VALUE EXPRESSION FLOATING)
return VALUEEXPRESSION FLOATING;

function "-" (LEFT : VALUE EXPRESSION.INTEGER) return VALUE-EXPRESSION;

Cannmn elemnts
113

INIASSIFIED

function "-" (LEFT VALUE EXPRESSIONINTEGER
return VALUEEXPRESSIONINTEGER;

function "-" (LEFT VALUEEXPRESSIONFLOATING) return VALUE-EXPRESSION;

function "-" (LEFT VALUEEXPRESSIONFLOATING)
return VALUEEXPRESSIONFLOATING;

For a program data type ct:

type VALUE EXPRESSIONCt Is private;

For an enumeration data type ct that is not derived from another enumeration
type (an ultimate parent type):

type VALUE EXPRESSIONENUMERATIONaCt is private;

For an integer or floating point program data type ct:

function 0+0 (LEFT VALUE-EXPRESSION-ct) return VALUEEXPRESSIONCt;

function "-" (LEFT VALUE EXPRESSION-Ct) return VALUE EXPRESSIONCt;

function "+" (LEFT VALUEEXPRESSIONct ; RIGHT VALUE EXPRESSIONct
return VALUEEXPRESSIONct;

function *+* (LEFT : VALUEEXPRESSIONct ; RIGHT ct)
return VALUEEXPRESSIONct;

function 0+0 (LEFT : ct ; RIGHT : VALUE EXPRESSION-Ct)
return VALUEEXPRESSIONct;

function "+" (LEFT - VALUE_EXPRESSIONct ; RIGHT VALUEEXPRESSIONct
return VALUEEXPRESSION;

function "+w (LEFT : VALUEEXPRESSIONct ; RIGHT ct)
return VALUE-EXPRESSION;

function " " (LEFT : Ct ; RIGHT : VALUE EXPRESSION ct)
return VALUEEXPRESSION;

function "-" (LEFT : VALUE_EXPRESSIONct ; RIGHT VALUE EXPRESSIONCt
return VALUEEXPRESSION ct;

function r-" (LEFT : VALUEEXPRESSION ct ; RIGHT ct)
return VALUEEXPRESSIONCt;

function *-" (LEFT : ct ; RIGHT : VALUE EXPRESSION at)
return VALUEEXPRESSIONat;

function "-" (LEFT : VALUEEXPRESSION-ct ; RIGHT : VALUE EXPRESSIONCt
return VALUEEXPRESSION;

Database Language Ada/SQL
114

UNCEASSIFIiD

function '- (LEFT : VALUEEXPRESSIONct ; RIGHT :t
return VALUEEXPRESSION;

function "- (LEFT : ct ; RIGHT : VALUE EXPRESSION at

return VALUEEXPRESSION;

function "*" (LEFT : VALUEEXPRESSION-Ct ; RIGHT VALUEEXPRESSION-Ct

return VALUEEXPRESSIONCt;

function "*" (LEFT : VALUEEXPRESSIONct ; RIGHT Ct)
return VALUEEXPRESSION ct;

function "' (LEFT : Ct ; RIGHT : VALUEEXPRESSION-Ct)

return VALUEEXPRESSION ct;

function "*" (LEFT : VALUEEXPRESSIONat ; RIGHT VALUEEXPRESSION ct
return VALUEEXPRESSION;

function "*" (LEFT : VALUEEXPRESSIONct ; RIGHT Ct)
return VALUEEXPRESSION;

function "*" (LEFT : ct ; RIGHT : VALUE EXPRESSION-ct)
return VALUE-EXPRESSION;

function "/" (LEFT : VALUEEXPRESSIONct ; RIGHT VALUEEXPRESSION ct
return VALUEEXPRESSIONct;

function "/" (LEFT : VALUEEXPRESSIONat ; RIGHT ct)

return VALUE EXPRESSIONct;

function "/" (LEFT : ct ; RIGHT : VALUE EXPRESSION-Ct)
return VALUE EXPRESSIONct;

function "/" (LEFT : VALUEEXPRESSIONat ; RIGHT VALUEEXPRESSION ct
return VALUE-EXPRESSION;

function "/" (LEFT : VALUEEXPRESSIONCt ; RIGHT Ct)

return VALUEEXPRESSION;

function "" (LEFT : ct ; RIGHT • VALUE EXPRESSION ct)
return VALUEEXPRESSION;

For an integer program data type ct:

function "+" (LEFT : VALUE EXPRESSIONat ; RIGHT VALUEEXPRESSION-ct
return VALUE EXPRESSION INTEGER;

function "+" (LEFT : VALUE EXPRESSIONat ; RIGHT ct)
return VALUE_EXPRESSIONINTEGER;

function "+" (LEFT : ct ; RIGHT : VALUE EXPRESSION-Ct)

return VALUEEXPRESSIONINTEGER;

Cmnwn elenents
115

WCASSI FIE)

function "-(LEFT :VALUE EXPRESSION at ; RIGHT VALUEEXPRESSION at
return VALUE EXPRESSION INTEGER;

function "-(LEFT :VALUEEXPRESSION-at ; RIGHT at)
return VALUE EXPRESSIONINTEGER;

function "-" (LEFT a t ; RIGHT :VALUEEXPRESSIONC at
return VALUEEXPRESSIONINTEGER;

function "** (LEFT :VALUE_ EPRESSIONwat ; RIGHT VALUEEXPRESSION at
return VALUE EXPRESSIONINTEGER;

function "*" (LEFT :VALUEEXPRESSION-at ; RIGHT at)
return VALUE EXPRESSIONINTEGER;

funct ion 0*0 (LEFT a t ; RIGHT :VALUE EXPRESSIOct)
return VALUE-EXPRESSION INTEGER;

function "/" (LEFT :VALUE -EXPRESSION-at ; RIGHT VALUEEXPRESSION at
return VALUE-EXPRESSIONINTEGER;

funct ion "/" (LEFT :VALUE EXPRESSIONCt ; RIGHT at)
return VALUE EXPRESSION INTEGER;

funct ion ",(LEFT at ; RIGHT :VALUE EXPRESSION at)
return VALUE EXPRESSIONINTEGER;

For a floating point program data type ct:

function "+" (LEFT :VALUEEXPRESSION-at ; RIGHT VALUEEXPRESSION ct
return VALUE EXPRESSION FLOAT ING,

function "+" (LEFT :VALUEEPRESSION-at ; RIGHT at
return VALUE EXPRESSION FLOATING;

function "+* (LEFT :at ; RIGHT :VALUE EXPRESSIONc)t
return VALUE EXPRESSION FLOATING;

function "-" (LEFT :VALUEEXPRESSION-at ; RIGHT VALUEEXPRESSION at
return VALUE-EXPRESSION FLOATING;

function -"(LEFT :VALUE EXPRESSION at ; RIGHT at)
return VALUEEXPRESSION FLOATING;

function "-w (LEFT :at ; RIGHT : VALUE EXPRESSIONct
ret urn VALUE-EX(PRESSION FLOATING;

function *'" (LEFT :VALUE-EXPRESSION-at ; RIGHT VALUEEXPRESSION at
return VALUE EXPRESSION FLOATING;

function "*" (LEFT :VALUE EXPRESSIONct ; RIGHT c t
return VALUE EXPRESSION FLOATING;

Database]Language Ada/SQL16

UN1ASSIFIED

function ' (LEFT : ct ; RIGHT : VALUEEXPRESSIONat
return VALUEEXPRESSIONFLOATING;

fuaction 0/0 (LEFT : VALUE EXPRESSION at ; RIGHT VALUEEXPRESSION-ct
return VALUZ EXPRESSION FLOATING;

fuaction 0/0 (LEFT : VALUEEXPRESSION. t ; RIGHT :t)
return VALUEEXPRESSION.FLOATING;

function 0/0 (LEFT : at ; RIGHT : VALUEEXPRESSION..t)
return VALUE EXPRESSIONFLOATING;

For an integer program subtype ct defined in library package p, of data type

dt (ct may be the same as dt):

package CONVERTTO is

package p is

function ct (LEFT : VALUEEXPRESSIONINTEGER)
return VALUEEXPRESSION-dt;

function ct (LEFT : VALUEEXPRESSIONINTEGER)
return VALUEEXPRESSION;

function ct (LEFT : VALUEEXPRESSIONINTEGER)
re turn VALUE-EXPRESSIONINTEGER;

end p;

end CONVERTTO;

For a floating point program subtype ct defined in library package p, of
data type dt (ct may be the same as dt):

package CONVERTTO Is

package p Is

function Ct (LEFT : VALUEEXPRESSIONFLOATING)
return VALUEEXPRESSION_dt;

function Ct (LEFT : VALUEEXPRESSIONFLOATING)
return VALUEEXPRESSION;

function Ct (LEFT : VALUEEXPRESSIONFLOATING)
return VALUEEXPRESSIONFLOATING;

function ct (LEFT : VALUEEXPRESSIONINTEGER
return VALUE EXPRESSIONdt;

function ct (LEFT : VALUEEXPRESSIONINTEGER

Canaon elements
117

m-"-L-' im l amm • mmnmm ~ .m mn i i i i I Nmm

UNCUSSIFIED

re turn VALUE-EXPRESSION;

tunction ct (LEFT : VALUEEXPRESSIONINTEGER)
return VALUE EXPRESSIONFLOATING;

end p;

end CONVERTTO;

For a character string program subtype ct defined in library package p, of
data type dt (ct maybe the same as dt):

package CONVERT-TO Is

package p Is

function ct (LEFT : VALUEEXPRESSIONSTRING)
return VALUEEXPRESSION_dt;

function ct (LEFT : VALUEEXPRESSIONSTRING)
return VALUEEXPRESSION;

function ct (LEFT : VALUEEXPRESSIONSTRING)
return VALUEEXPRESSIONSTRING;

end p;

end CONVERT-TO;

For an enumeration program subtype ct defined in library package p, of data
type dt with ultimate parent type pt (ct may be the same as dt, and dt may
be the same as pt):

package CONVERTTO is

package p Is

function ct (LEFT : VALUEEXPRESSIONENUERATIONpt)
return VALUEEXPRESSION-dt;

function at (LEFT : VALUEEXPRESSIONENUMERATIONpt)
return VALUEEXPRESSION;

function at (LEFT : VALUEEXPRESSIONENUMERATIONpt)
return VALUEEXPRESSIONENUMERATION;

function ct (LEFT : VALUEEXPRESSIONENUMERATION.pt)
retur VALUEEXPRESSIONENqUMERATIONpt;

end p;

end CONVERT-TO;

Database Language Ada/SQL
118

LI43ASSIFIED

Eamp le

MINIMUMWAGE EXAMPLETYPES. ADA_SQL. HOURLY_WAGE;

ESTIMATEDTIPS DPLOYEE_SALARY;
NUMBER DATABASE. INT;

SELEC (COUNT ('

FROM E) MDPLOYEE,
WHERE ") CONVERT-TO. EXAMPLE_TYPES. HOURLY_WAGE

((SALARY + ESTIMATEDTIPS) / 2080.0) (+ MINIMUMWAGE);
INTO (NUMBER);

-- variations: - vs. + binary (dyadic) adding operator
-- * vs. / multiplying operator

-- - vs. + unary (monadic) adding operator

Syntax Rules

1) A <value expresdon> that includes a <distinct set function> shall not include any dyadic opera-
tors.

2) If the <primary> is of a character string or an enumeration data type, then the <value expression>
shall not include any arithmetic operators. The data type of the result is the same as that of the <pri-
mary>.

3) The data type of the result of a monadic arithmetic operator is the same as the data type of the
(integer or floating point) <term> to which it is applied.

4) Case:

a) If both operands of a dyadic arithmetic operator are of a universal data type, then:

Case:

i) I both operands are of the same universal data type (universal integer or universal float-
ing point), then the data type of the result is the same as that of the operands.

ii) If one operand is of the universal integer data type and the other operand is of the
universal floating point data type, then the result is of the universal floating point data
type, and one of the following shall be true:

1) The operator shall be multiplication, or

2) The operator shall be division, and the right operand shall be the one of the
universal integer data type.

b) If either operand of a dyadic arithmetic operator is not of a universal data type, then both
operands shall be of the same data type. The data type of the result is the same as that of the

119 Common elements

119r

UNCLASSIFIED

operands.

5) The data type of the result of a CONVERT-TO is that denoted by the <type identifier>, and shall
be an integer, floating point, character string, or enumeration data type.

Case:

a) If the <library package name> is STANDARD, then the <type identifier> shall be declared
within the STANDARD Ada/SOL predefined environment.

b) If the library package denoted by the <library package name> is part of the Ada/SQL
predefined environment, then the <type identifier> shall be declared within that library pack-
age.

c) If the library package denoted by the <library package name> is not part of the Ada/SQL
predefined environment, then the <type identifier> shall be declared within the ADA..SQL
nested package of that library package.

6) The <value expression> operand of a CONVERT-TO shall contain at least one of the following: a
<column specification>; a <set function specification>; the <key word> USER; a <program
object name>, other than a <named number>, not contained in an <indicator value>; an <Ada
type qualification>; or an <enumeration literal> which is a literal of exactly one enumeration data
type declared in a <schema package> or the predefined Ada/SQL environment.

7) The <value expression> operand of a CONVERT-TO shall contain at least one of the following: a
<cohumn specification>, a <set function specification>, an <indicator specification>, or the <key
word> USER.

8) Case:

a) If the <type identifier> of a CONVERT-TO denotes an integer data type, then the <value
expression> operand of the CONVERT-TO shall be of an integer data type.

b) If the <type identifier> of a CONVERT-TO denotes a floating point data type, then the
<value expression> operand of the CONVERT-TO shall be of an integer or a floating point
data type.

c) If the <type identifier> of a CONVERT-TO denotes a character string data type, then the
<value expression> operand of the CONVERT-TO shall be of a character string data type.

d) If the <type identifier> of a CONVERT-TO denotes an enumeration data type, then the
<value expression> operand of the CONVERT-TO shall be of an enumeration data type
such that both enumeration data types have the same ultimate parent type.

General Rules

Database Language Ada/SQL
120

UNCLASSEIFE

1) I the value of any <priay> is the null value, then the result of the <value expression> is the null
value.

2) The result of a CONVERT-TO with a <value expression> equal to the null value is the null value.
U the subtype denoted by the <type Ident er> does not permit null values, then the program exe-
cuting the CONVERT-TO is erroneous.

3) The result of a nonnull CONVERT. s the value of its <value expression> operand, typed
according to the <type identifier>. U ue result of the <value expression> does not belong to the
subtype denoted by the <type identifier>, then the program executing the CONVERT-TO is
erroneous.

Case:

a) Conversion of an integer value to an integer value shall be exact.

b) Conversion of an integer or a floating point value to a floating point value shall retain at least
the accuracy of the subtype denoted by the <type identifier>.

c) Conversion of a character string value to a character string value shall be as follows:

i) The result character string shall have as many characters as the <value expression>

character string.

Case:

1) If the subtype denoted by the <type identifier> is an unconstrained character
string, then the maximum number of characters in a string of that subtype shall
not be less than the number of characters in the character string <value expres-
sion>, otherwise the program executing the CONVERT-TO is erroneous.

2) If the subtype denoted by the <type identifier> is a constrained character string,
then the number of characters in that string subtype shall be the same as the
number of characters in the character string <value expression>, otherwise the
program executing the CONVERT-TO is erroneous.

ii) Successive characters in the result are set to quccessive characters in the <value expres-
sion>, converted to the component data type of the character string data type denoted
by the <type identifier>. If any character in the <value expression> does not belong to
the component subtype, then the program executing the CONVERT-TO is erroneous.

d) Conversion of an enumeration value to another enumeration value shall be according to
matching enumeration literals.

4) U operators are not specified, then the result of the <value expression> is the value of the specified
<primary>.

Common elements

121

UNCLASSIFIED

5) When a <value expression> is applied to a row of a table, each reference to a column of that table is
a reference to the value of that column in that row.

6) The monadic arithmetic operators + and - specify monadic plus and monadic minus, respectively.
Monadic plus does not change its operand. Monadic minus reverses the sign of its operand. Except
where the result is of a universal data type, the result of a monadic operator shall belong to the base
type of its operand; otherwise the program causing the <value expression> to be evaluated is
erroneous.

7) The dyadic arithmetic operators +, -, , and / specify addition, subtraction, multiplication, and divi-
sion, respectively. A divisor shall not be 0; otherwise, the DATA.EXCEPTION exception is raised.
Except where the result is of a universal data type, the result of a dyadic arithmetic operator shall
belong to the base type of its operands; otherwise, the program causing the <value expression> to
be evaluated is erroneous.

8) All arithmetic operators shall yield mathematically correct results.

a) The result of integer operations other than division shall be exact.

b) The result of integer division is carried forward to an implementor defined number of decimal
places, including at least all digits to the left of the decimal point. Such results may be used as
"integer" operands to other operators, and the number of decimal places carried forward may
affect the ultimate result of chains of operations. Any program whose effect depends on the
number of decimal places carried forward is erroneous. When assigned to an integer <pro-
gram variable> or database column, such an "integer" result is rounded to the nearest integer.
A result that is halfway between two integers may be rounded either up or down. Any pro-
gram whose effect depends on the direction of rounding of results halfway between two
integers is erroneous.

c) The result of floating point operations shall be correct to the accuracy of the data type of the
result.

9) Expressions within parentheses are evaluated first and when the order of evaluation is not specified
by parentheses, multiplication and division are applied before monadic operators, monadic opera-
tors are applied before addition and subtraction, and operators at the same precedence level are
applied from left to right.

Notes

1) The functions effectively declared for <value expression> have four classes of return type, based on
the context in which the <value expression> appears, as follows:

VALUEEXPRESSION - used in contexts where the data type of the <value expression> is not
important for the effective Ada declarations. Relevant contexts immediately containing <value
expression>:

<subquery>, used in the following context: <exists predicate>

Database Language Ada/SQL
122

UNCLASSnIID

<select list>

VALUE.E RESSION.ct (typed according to program type) - used in contexts where the result of
the <value expression> will be used in another operation for which the effective Ada declarations
are defined with strongly-typed operands. Relevant contexts immediately containing <value expres-
sion>:

<value expresdon>, when used as the left operand of a dyadic + or -

<primary>, when used as a <term> or a <factor> that is an operand of a dyadic +, -, ',or /

<comparison predicate>

<between predicate>

<in predicate>

<quantified predicate>

<subquery> used in the following contexts: <comparison predicate>, <in predicate>,
<quantified predicate>

<set clause: positioned>

<set clause: searched>

VALUE.EXPRESSION.x, where x is INTEGER, FLOATING, STRING, or
ENUMERATION.ct, where ct is the name of an enumeration data type not derived from any other
enumeration type (an ultimate parent type) - used in contexts where the <value expression> is the
operand of a CONVERT-TO. See Note 2.

VALUJEXPRESSION-y, where y is INTEGER, FLOATING, STRING, or ENUMERATION -
used in contexts where the result of the <value expression> will be used in an operation with only
one operand, where the type class (integer, oating point, character string, or enumeration) of the
operand is important, and where the context of that operation is such that the function effectively
declared for it returns a result of type VALUEEXPRESSION or VALU&EXPRESSION.y. Note
that three of the same types (VALUEEXPRESSIONJINTEGER, VALUE.EXPRESSION_-
FLOATING, and VALUEXPRESSIONSTRING) are used for both this class and the previous
class. See also Note 3. Relevant contexts immediately containing <value expression> (these con-
texts may also require functions returning strongly-typed VALU&EXPRESSIONct, if they are
themselves contained in a context where the effective Ada declarations are defined with strongly-
typed operands - see Note 4):

<all set function>

<primary>, when used as a <term> that is an operand of a monadic + or - operator

Effective Ada/SQL subprograms with parameters corresponding to <value expression>s are also
declared with those parameters of the appropriate program data types (denoted as "ct" in this docu-
ment). A <value expression> not containing a <column specification>, a <set function
specification>, an <indicator specification>, or the <key word> USER will be of a program type,
rather than of one of the Ada/SOL return types described above. Any operators applied to

C Common elements
123

UNCLASSFIED

program values are, of course, standard Ada operators, rather than the effective Ada/SQL opera-
tors discussed here.

2) There are several CONVERT-TO functions effectively declared for each subtype, ct, to which a
value may be converted. The effective type of the parameter to each of these functions denotes the
classes of data types that may be converted to the target data type. Thus, only integer values may be
converted to an integer data type, either integer or floating point values may be converted to a float-
mg point data type, and only string values may be converted to a string data type. Enumeration data
types are themselves divided into classes, since (by Ada rules) a conversion is allowed from an
operand type to a target type if one of the two types is derived from the other, directly or indirectly,
or if there exists a third type from which both types are derived, directly or indirectly. This enables
enumeration types to be partitioned into classes, with types in the same class being mutually conver-
tible while those in different classes are not. Within each class there exists a data type that is not a
derived type; all other types in the class are derived, directly or indirectly, from it. We use this so-
called ultimate parent type to designate the class.

We have elected to type the parameter of effective CONVERT-TO functions according to the
appropriate data type class. It would also be feasible to strongly type the parameter according to the
actual data type of the operand being converted. An implementation which generates all possible
effective Ada/SQL declarations based on the type declarations contained in a <schema> would
then have to generate order(n*2) functions, however, where n is the number of different data types
declared. By using type classes, the number of functions that must be generated is order(n).

3) Those functions that are not strongly typed that are effectively declared for the monadic operators
also have a parameter typed according to a class of data types. Since no conversion is involved here,
it is suicient to distinguish integer, floating point, string, and enumeration, without dividing the
enumeration types into classes. Actually, it is really only necessary to distinguish numeric and non-
numeric, but we elected to reuse some of the effective types invented for the CONVERT-TO func-
tions. This yields a smaller number of possible effective functions than would defining new effective
types such as VALUEEXPRESSIONNUMERIC and VALUE-EXPRESSIONNON-
NUMERIC. It would also be possible to always strongly type the parameter to monadic operators,
even in contexts where the result should not be strongly typed. Our decision to only strongly type
the parameter if the result is to be strongly typed again reduces the total number of possible effective
functions required.

4) Effective monadic operators returning a strongly typed result have a strongly typed parameter, (type
denoted by VALUE.EXPRESSION.ct in Note 1). Effective monadic operators are not defined
with parameter of program data type ct, because the standard Ada operators apply in that case.
Effective monadic operators returning a result indicative of type class or a VALUEEXPRESSION
result have a parameter typed according to type class (type denoted by VALUEEXPRESSION.y in
Note 1), rather than being strongly typed. Example of monadic - with s.trongly typed parameter
(assume A, B, and C are database columns):

P.-A B-C...

Parameters to dyadic -, both strongly typed: - A * B and C

Parameter to monadic -, strongly typed: A * B

Parameters to dyadic *, both strongly typed: A and B

Database Language Ada/SQL
124

UNCLASSIFIED

Example of monadic - with parameter and result typed according to class (assume A is a database
column, ct is a numeric subtype defined in library package p):

. . CONV TO.p.ct (- A)

Example of monadic - with parameter typed according to class and result of type
VALUE.EXPRESSION (assume A is a database column):

SELEC (& . . . ((select statement>)

5) The overloaded dyadic operators have two different types of operands. The effective type of each
operand is based on the text of the corresponding <value expression>, <term>, or <factor> in
the <value expression>, as follows:

VALU&_EXPRESSION.ct (typed according to program type) - used when the corresponding con-
struct contains at least one of a <column specification>, a <set function specification>, an <indi-
cator specification>, or the <key word> USER

ct (program type) - used when the corresponding construct does not contain a <column
specification>, a <set function specification>, an <indicator specification>, or the <key word>
USER

6) The Ada/SQL <value expression> conforms to the ANSI SOL <value expression>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SOL Ada/SOL See Notes
SR1 SRI -
SR2 - 7
SR3 SR2 8
- SR3 9

SR4-SR5 SR4 10
- SR5 11

S- SR6 12
- SR7 13
- SR8 14

GRI GRI -

- GR2-GR3 15
GR2-GR3 GR4-GR5 -

GR4-GR5 GR6-GR7 16
GR6 GR8 17
GR7 GR9 18

7) ANSI SOL SR2, prohibiting a plus or a minus sign from being adjacent to another plus or minus
sign, without an intervening token, is not necessary in Ada/SQL. The Ada/SQL BNF does not per-
mit such an occurrence in non-comment program text, so an explicit SR is not necessary. (The

2' Common elements

UNCLASSIFIED

reason that the adjacency is possible in ANSI SOL is that an ANSI SOL <numeric literal> can
begin with a leading plus or minus sign. Ada numeric literals may no, have a leading sign, so neither
can Ada/SOL <numeric literal>s. An Ada/SQL comment delimiter ("-"), which starts with a
minus sign, may follow a plus or minus sign in an Ada/SQL statement; the corresponding ANSI
SOL statement does not include the comment or its delimiter.)

8) The ANSI prohibition on applying arithmetic operators to character strings is extended to enumera-
tion types in Ada/SQL. Ada/SQL SR2 includes specification of strong typing.

9) There is no ANSI SR that defines the data type of the result of a monadic operator, but it is presum-
ably the same as the data type of the operand. Ada/SQL explicitly specifies the data type, in accor-
dance with strong typing.

10) Ada/SQL SR4 expresses one aspect of Ada/SQL's strong typing, and also embodies Ada rules for
handling numbers of type universaUnteger and universaLreal. See also Note 17 for comments on
the accuracy of integer division.

11) Based on the SDL syntax rules, the expanded name of a user-defined subtype denoted by a <type
identifier> is <library package name>.ADASQL.<type identifier>. The designation of a
CONVERT-TO for that subtype is, however, CONVERT-TO.<library package name>.<type
identifier>, omitting the ADA..SQL. Omitting the ADA..SQL does not introduce any ambiguities,
because the only <type identifier>s contained in the named library package that may be referenced
in a CONVERT-TO are those defined in the ADA..SQL nested package.

12) Ada/SQL SR6 ensures that the data type of the operand to the CONVERT-TO is known from the
source text, similar to the Ada type conversion requirement that "the type of the operand of a type
conversion must be determinable independently of the context". There is an additional reason for
this restriction, however. Effective functions required for the operands to CONVERTTOs used
within a program may be ambiguous when applied to an operand whose data type is not explicitly
known. For example, consider a floating point data type, TAX..AMOUNT, declared in library
package P, two other floating point data types, ANNUAL-SALARY and MONTHLY-SALARY,
two program variables, ANNUAL-PAY and MONTHLY-PAY, of those two data types, respec-
tively, and a program containing the following two <select statement>s (the right operand to the
multiplication is presumably a lookup of tax rates in a database table):

SELEC (CONVERT.T0.P.TAXAMOUNT (INDICATOR (M .NUALPAY)) *

SELEC (CONVERTTO.P.TAXAMOUNT (INDICATOR (MONTHLY-PAY)) *

An implementation which actually generates the effective Ada declarations must generate at least
the following:

package CONVERTTO Is
package P Is

function TAXAMOUNT (LEFT VALUEEXPRESSIONFLOATING
return VALUE EXPRESSIONTAXAMOUNT;

end P;
end CONVERTTO;

Database Language Ada/SQL
126

LICXASSIFIED

function INDICATOR
VALUE ANNUAL_SALARY;
INDICATOR INDICATORVARIABLE : NOTNULL

return VALUEEXPRESSION-FLOATING;

function INDICATOR
VALUE MONTHLYSALARY;
INDICATOR INDICATORVARIABLE -NOTNULL

return VALUEEXPRESSIONFLOATING;

Now, suppose the same program also contains the following <select statement>, in violation of

SR6:

SELEC (CONVERTTO.P.TAXAMOUNT (INDICATOR (25_000.00)) *

25-000.00 is a literal value of both ANNUAL-SALARY and MONTHLY-SALARY data types, so
that the effective INDICATOR function is ambiguous. To comply with SR6, the type of the literal
can be explicitly qualified, as in the following legal fragment:

SELEC (CONVERTTO. P. TAX AMOUNT
(INDICATOR (ANNUALSALARY' (25_000.00))) &

Release I implementations do not enforce SR6 if the <value expression> is of an integer, floating
point, or character string data type. Instead, the type of the <value expression> is assumed to be
STANDARD.INTEGER, STANDARD.FLOAT, or STANDARD.STRING, as appropriate.

13) A <value expression> not containing a <column specification>, a <set function specification>,
an <indicator specification>, or the <key word> USER is, as far as the effective Ada declarations
are concerned, of a user-defined (or predefined) program type. If CONVERT-TO were allowed to
data type t1, defined in library package p, from such a <value expression> of data type t2, then the
following CONVERT-TO function (as well as others) must be effectively declared:

package CONVERTTO IS

package p is

function tl (LEFT t2) return VALUEEXPRESSION_t1;

end p;

end CONVERTTO;

An implementation which generates all possible effective Ada/SOL declarations, based on the type
declarations contained in a <schema>, would have to generate order(nee2) such functions, where n
is the number of different data types declared. By prohibiting the <value expression> operand of a
CONVERT-TO from being of a program type, SR7 ensures that the number of functions effectively
declared is linear in the number of user data types defined, rather than depending on the square of
the number of data types. Note that the effective Ada/SQL declarations are such that a <value
expression> containing a <column specification>, a <set function specification>, an <indicator
specification>, or the <key word> USER, when used as the operand to a CONVERT-TO,
effectively returns an object of one of the VALUEEXPRESSION..x types described in Note 1,

Common elements
127

UNCLASSIFIED

rather than a type unique to its underlying conceptual type, thereby avoiding the n**2 problem.

Release 1 implementations do not support the <key word> USER.

The restriction of Ada/SQL SR7 should actually have virtually no impact on Ada/SQL program-
mers, because <Ada type conversion>s (described with <value specification>) can be used on the
prohibited <value expression>s. CONVERT-TO does provide more flexibility on character string
conversions than does Ada type conversion (see Note 15). To use this flexibility on program
objects, the program object can be expressed as an<indicator specification> to comply with
Ada/SQL SR7. For example, the following violates SR7 (assume that
SOCIAL-SECUR1TLNUMBER is a program variable of a character string type, with com-
ponents of a data type other than those of character string type 1DENTIFICATIONNUMBER,

defined in package P):

. . CONVERTTO. P. IDENTIFICATIONNUMBER
(SOCIAL_SPCURITY_NUMBER)

However, the following has the exact same effect, and is permitted:

CONVERTTO. P. IDENTIFICATIONNUMBER
(INDICATOR (SOCIAL..SECURITY_NUMBER))

14) CONVERT-TO is designed such that only types of the same class are mutually convertible: numer-
ics to numerics, character strings to character strings, and enumerations to enumerations with the
same ultimate parent type. Numerics are not totally mutually convertible, however. Although both
integer and floating point values can be converted to a floating point type, only integer values can be
converted to an integer type. Why not permit a floating point value to be converted to an integer
type, particularly since "all numbers are comparable" in ANSI SQL? The ANSI comparability
statement notwithstanding, ANSI SOL does not permit approximate numeric values (the analog of
Ada/SQL floating point) to be assigned to exact numeric (a superset of Ada/SQL integers) database
columns or program variables. To enforce this restriction in Ada/SQL, CONVERT-TO is not
allowed from a floating point value to an integer type. The net result is that any computations involv-
ing both integer and floating point values must be done in a floating point type. This would most
likely be the desired mode anyway, due to the possible loss of precision when using integer arith-
metic.

Note that the CONVERT-TO prohibition on converting floating point to integer is in contrast to
Ada type conversion (including as discussed with <value specification>), in which floating point
values may be converted to an integer type.

15) Unless the database supports subtype checking, it is possible to use CONVERT-TO on a value not
belonging to the subtype denoted by the <type identifier>; requiring checking for this condition
could have an unacceptable performance impact on an Ada/SQL system. For this reason, GR3
states that programs performing bogus type conversions are erroneous. An implementation that can
support database subtype checking may raise the DATA..EXCEPTION exception upon detecting a
subtype constraint violation.

Note that Ada/SQL character string conversion includes a type conversion for each character in the
string. This is in contrast to Ada type conversion for strings (including that discussed with <value
specification>), which requires that two string types have the same component type in order to be
mutually convertible. The extended Ada/SQL convertibility is provided to match the functionality

Database Language Ada/SQL
128

-'-L-- - - - . -. - . . l i m Im~m ~ m mm mm

UNCLASSIFIED

of ANSI SOL, in which all character strings are comparable.

16) Ada/SQL GR6 and GR7 address the question of arithmetic results out of representable range,
Since the capabilities of SOL implementations vary considerably, and requiring any specific check-
ing on arithmetic results could have an unacceptable performance impact on an Ada/SQL system, it
was felt best to simply declare programs erroneous if they performed a computation out of the range
of the base type involved. An implementation that can support such error checking may raise the
DATA.EXCEPTION exception upon detecting a result out of range of the required base type.

17) Although ANSI GR6 addresses the accuracy of SQL exact numeric operations, it does not address
that of approximate numeric operations. Ada/SQL GR8 does address floating point operations,
which are analogous to ANSI SQL approximate numeric operations. Ada/SQL integers are analo-
gous to a subset of ANSI SOL's exact numerics. (Ada/SQL support may be extended at a later date
to encompass all of ANSI SQL exact numerics.) ANSI SOL SR4 and GR6 together determine that
integer addition, subtraction, and m-dtiplication are exact. ANSI SQL SR4d (particularly) and
GR6b, however, leave unspecified the accuracy of intermediate results of division. With integer
arithmetic involving several operations, the final result may differ depending on the accuracy to
which intermediate results are carried. Example:

2 / 3 + 2 / 3 I + 1 - 2 if intermediate results are rounded to integer

- .7 + .7- 1 if intermediate results are rounded to one decimal place

Since ANSI SQL does not require any particular implementation of intermediate results, Ada/SQL
cannot either, although we do require that the result be correct to at least the nearest integer. We
also note that a program whose effect depends on the precision of a particular implementation is
erroneous.

Note that the requirement of ANSI SQL SR6a, that an exact arithmetic result be representable with
the precision and scale (0 for Ada/SQL integers) of the result type, need not be stated for
Ada/SQL, because it is implicit in the Ada/SQL requirement that the result belong to the same data
type as the operands.

18) Ada/SQL GR9 describes the Ada order of expression evaluation, which is not the same as that
prescribed in ANSI SOL GR7. The properties of the arithmetic operators are such, however, that
results should be the same regardless of which order of evaluation is used.

Common elements
129

UNCLASSIFIED

5.10 <predicate>'

Functlon

Specify a condition that can be evaluated to give a truth value of "true", "false", or "unknown".

Format

<predicate> ::-
<comparison predicate>
<between predicate>
<in predicate>
<like predicate>
<null predicate>
<quantified predicate>
<exists predicate>

Effective Ada Declarations

None.

Example

See 5.11 -5.17.

Syntax Rules

None.

General Rules

1) The result of a <predicate> is derived by applying it to a given row of a
table.

Notes

1) The Ada/SQL <predicate> conforms to the ANSI SQL <predicate>.

2) Release I implementations do not support the <null predicate>, the <quantified predicate>, or the
<exists predicate>.

Database Language Ada/SQL
130

UNCLASSIFED

.11 <comparlson predicate>

Function

Specify a comparison of two values.

Format

<comparison predicate>:-
<equality operator>
(<value expression> ,{<value expression> I<subquery> }

I<value expression> <ordering operator>
{<value expression> I <subquery>}

<equality operator> :
EQ INE

<ordering operaor>:-
< I> I <- I >

Effective Ada Declarations

For a program data type ct:........ . .- .

funct ion EQ (LEMFT VALUE EXPRESSIONct ; RIGHT VALUEEXPRESSION at
return SEARCHCONDITION;

function EQ (LEMFT VALUEEXPRESSION-ct ; RIGHT ct
return SEARCHCONDITION;

function EQ (LEFT : t ; RIGHT :VALUEEXPRESSIONc)t
return SEARCH CONDITION;

funct ion EQ (LEFT :VALUEEXPRESSION-ct ; RIGHT :SUBQUERYct
return SEARCHCONDITION;

function EQ (LEFT Ct , RIGHT :SUBQUERY~ct) return SEARCHCONDITION,

function NE (LEFT VALUEEXPRESSION-at ; RIGHT VALUE EXPRESSION-ct
return SEARCHCONDITION,

function NE (LEFT: VALUEEXPRESSION-ct ; RIGHT ct)
return SEARCH-CONDITION.*

function NE (LEFT a t ; RIGHT :VALUEEXPRESSIONc)t
return SEARCHCONDITION;

function NE (LEFT :VALUE EXPRESSION-at ;RIGHT SUBQUERYct
return SEARCHCONDITION;

Coan el mUts
131

UNCLASSIFIMD

function NE (LEFT Ct ; RIGHT : SUOUERY ct) return SEARCH CONDITION;

function 00 (LEFT VALUEEXPRESSIONCt ; RIGHT VALUEEXPRESSION at
return SEARCHCONDITION;

function *(I (LEFT : VALUEEXPRESSION at ; RIGHT Ct)
retu rn SEARCH-CONDITION;

function "(I (LEFT : ct ; RIGHT : VALUE EXPRESSION at)
return SEARCHCONDITION;

function C"' (LEFT : VALUE EXPRESSION ct ; RIGHT : SUBQUERYct)
return SEARCHCONDITION;

function *<" (LEFT Ct ; RIGHT : SUBQUZRYat) return SEARCH-CONDITION;

function 0>0 (LEFT VALUE EXPRESSIONot ; RIGHT VALUEEXPRESSIONct
return SEARCH CONDITION;

function ')' (LEFT : VALUE EXPRESSIONct ; RIGHT ct)
return SEARCH CONDITION;

function '>u (LEFT : Ct ; RIGHT : VALUEEXPRESSION-ct) .

return SEARCH-CONDITION;

function ">a (LEFT : VALUE EXPRESSION Ct ; RIGHT : SUBQUERY ct
return SEARCH CONDITION;

function ") (LEFT Ct ; RIGHT - SUBQUERYact) return SEARCH CONDITION;

function "(-" (LEFT VALUEEXPRESSION at ; RIGHT VALUE EXPRESSION at
return SEARCH-CONDITION;

function "-' (LEFT : VALUE EXPRESSION_Ct ; RIGHT Ct)
return SEARCH CONDITION;

function "<-" (LEFT : at ; RIGHT : VALUE_EXPRESSIONOr)
return SEARCH-CONDITION;

function *(-* (LEFT : VALUEEXPRESSION ct ; RIGHT : SUBOUERYct

return SEARCH CONDITION;

function "(-" (LEFT : at ; RIGHT : SUBQUERYct) return SEARCHCONDITION;

function a)-" (LEFT : VALUE_EXPRESSIONat ; RIGHT VALUE EXPRESSION ct
return SEARCHCONDITION;

function I)-' (LEFT : VALUEEXPRESSION-at ; RIGHT ct)
return SEARCH CONDITION,

function '>-* (LEFT : at ; RIGHT VALUE_EXPRESSION-ct)
return SEARCH-CONDITION;

Database Language Ada/SQL
132

ULNIASSIFIID

tanetlon)- (L : VALUE EXPRESSION_-t ; RIGHT : SUBUERYct)
return SEARCH_CONDITION;

function O> (LEFT : ct ; RIGHT : SUBQUERY.ct) return SEARCHCONDITION;

Example

package E is new NIPLOYEE_CORRELATION. NAME (E);

CURSOR : CURSORNAME;

DECIAR (CURSOR , CURSORFOR ->
SELEC ("*',

FROM -) E.EMPLOYEE,
WHERE SALARY) -- variations: , -, >-

SELEC (AVG (SALARY),
FROM) DMPLOYEE,
WHERE -) EQ (MANAGER , E.KANAGER)))); - variation: NE

Syntax Rules

1) The data types of the first <value expression> and the <subquery> or second <value expression>
shall be the same.

2) If the <comparison predicate> is of the form <value expression> <ordering operator> <value
expression>, then at least one of the two <value expression>s shall contain a <column
specification>, a <set function specification>, an <indicator specification>, or the <key word>
USER.

General Rules

1) Let x denote the result of the first <value expression> and let y denote the result of the <subquery>
or the second <value expression>. The result of the <subquery> shall be at most one value; other-
wise, the CARDINAL1TYVIOLATION exception is raised.

2) If x or y is the null value or if the result of the <subquery> is empty, then the result of the <com-
parison predicate> is unknown.

3) lIx and y are non-null values, then the <comparison predicate> is either true or false:

"EQ , y)is true if and only if x and y are equal.
"NE(x, y)" is true if and only if x and y are not equal.
"x < y" is true if and only if x is less than y.
"x > y" is true if and only if x is greater than y.
"x <- y" is true if and only if x is not greater than y.
"x >- y" is true if and only if x is not less than y.

C Common elements
133

UNCLASEFIED

4) Integer and floating point numbers are compared with respect to their algebraic values.

5) Enumeration values are compared with respect to the ordering specified by the <enumeration
type>.

6) The comparison of two character strings is determined by the comparison of <character>s with the
same ordinal position. If the strings do not have the same length, then the comparison is made with
a working copy of the shorter sting that has been effectively extended on the right with <space>s so
that it has the same length as the other string.

7) Two strings are equal if all <character>s with the same ordinal position are equal. If two strings are
not equal, then their relation is determined by the comparison of the first pair of unequal
<character>s from the left end of the strings. This comparison is made with respect to the ASCII
collating sequence.

8) Although "EQ (x, y)" is unknown if both x and y are null values, in the contexts of GROUP-BY,
ORDER-BY, and any <key word> suffixed with _DISTINCT, a null value is identical to or is a
duplicate of another null value.

Notes

I) The overloaded comparison operators have three different types of operands. The effective type of
each operand is based on the text of the <comparison predicate> as follows:

VALUE.EXPRESSIONct (typed according to program type) - corresponds to a <value expres-
sion> in the <comparison predicate>; used when the <value expression> contains at least one of a
<column specification>, a <set function specification>, an <indicator specification>, or the <key
word> USER

ct (program type) - corresponds to a <value expression> in the <comparison predicate>; used
when the <value expression> does not contain a <column specification>, a <set function
specification>, an <indicator specification>, or the <key word> USER

SUBQUERYct (typed according to program type) - corresponds to a <subquery> right operand in
the <comparison predicate>

2) The Ada/SQL operators corresponding to ANSI SQL "-" and "<>" are written as prefix EQ and
NE, due to Ada restrictions on overloading infix "-" and "/-".

3) The Ada/SQL <comparison predicate> conforms to the ANSI SQL <comparison predicate>.

The correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

Database Language Ada/SQL
134

UNCLASSOM

ANSI SOL Ada/SOL See Notes
SRI SRI 4

- SR2 5
GRI-GR4 GRI-GR4 -

- GR5 6
OR GR6 7
GR6 GR7 8
GR7 GR8 -

4) Ada/SQL SRI expresses one aspect of Ada/SQL's strong typing.

5) A <value expression> not containing a <column specification>, a <set function specification>,
an <indicator specification>, or the <key word> USER is, as far as the effective Ada declarations
are concerned, of a user-defined (or predefined) program type. If two such <value expression>s
(necessarily of the same data type) were to be used in a <comparison predicate> separated by an
<ordering operator>, then the effective Ada/SQL declaration for that <ordering operator> would
redefine the corresponding predefined Ada operator for that program type. By prohibiting two
<value expression>. separated by an <ordering operator> in a <comparison predicate> from
both being of a program type, SR2 prevents this undesirable situation. Note that the effective
Ada/SQL declarations are such that a <value expression> for program data type ct, containing a
<column specification>, a <set function specification>, an <indicator specification>, or the <key
word> USER, when used in a <comparison predicate>, effectively returns an object of type
VALUELEXPRESSION.ct. Thus, the effective Ada/SQL declaration of the <ordering operator>
with at least one parameter of type VALUE-EXPRESSIONct does not redefine the corresponding
predefined Ada operator with parameters of data type ct.

The restriction of Ada/SQL SR2 should actually have virtually no impact on Ada/SQL program-
mers, because the result of a prohibited <comparison predicate> is not dependent on the database,
and so could be computed outside of the Ada/SQL statement. If a programmer insists on using two
<value expression>s not containing any of a <column specification>, a <set function
specification>, or the <key word> USER in a <comparison predicate> separated by an <order-
ing operator>, then one of the <value expression>s can be expressed as an <indicator
specification> to comply with Ada/SQL SR2. For example, the following violates SR2 (assume
that PROPOSED-SALARY and CURRENTSALARY are program vriables of type
EMPLOYEESALARY):

. . . PROPOSEDSALARY > CURRENT_SALARY .

However, the following has the exact same effect, and is permiteed:

. . . INDICATOR (PROPOSVD_SALARY) > CURRENTSALARY .

Release 1 implementations do not support the <key word> USER.

6) Ada/SQL extends ANSI SOL to include support of enumeration types.

C Common elements
135

A -- -- m m s m la ll
a l s a l s ~ M

I ~

UNCLASSIFIP

7) Note that ANSI SQL and Ada/SQL character string comparisons will yield different results from
Ada string comparisons for two strings of unequal lengths that differ only in the number of trailing
blanks. ANSI SQL and Ada/SQL consider such strings to be equal; Ada considers the shorter
string to be less than the longer one.

8) The collating sequence for <character>s is implementor-defined in ANSI SQL; Ada/SQL requires
that the collating sequence be ASCH, consistent with Ada.

Database Language Ada/SQL
136

UNCLASSIFIED

5.12 (between predicate>

Function

Specify a range comparison.

Format

<between predicate> ::-
BETWEEN (<value expression>, <value expression> AND <value expression>)

Effective Ada Declarations

For a program data type ct:

type AND ct is private;

fuct ion "AND"
LEFT VALUEEXPRESSIONct;
RIGHT VALUEEXPRESSION at) return AND ct;

function *AND" (LEFT VALUE_EXPRESSION_at ; RIGHT : ct) return AND at;

function "AND (LEFT at ; RIGHT VALUEEXPRESSION ct) return ANDct;

function *AND" (LEFT at ; RIGHT ct) return AND_at;

fun tou BETWEEN (LEFT VALUEEXPRESSION-at ; RIGHT AND at
return SEARCHCONDITION;

function BETWEEN (LEFT : Ct ; RIGHT : AND at) return SEARCHCONDITION;

Example

CURSOR CURSOR NAME;

DECLAR (CURSOR , CURSORFOR-)
SELEC ('*,
FROM "> EMPLOYEE,
WHERE -> BETWEEN (SALARY , 20000.00 AND 30_000.00)));

Syntax Rules

1) The data types of the three <value expression>s shall be the same.

2) I the <value expression>s are of a boolean data type, then at least one of the last two (separated by
the AND) shall contain a <column specification> or an <indicator specification>.

General Rules

13 Common elements
. 137

UNCLASSIFIED

1) Let x, y, and z denote the result of the first, second, and third <value expression>, respectively.

2) "BETWEEN (x, y AND z)"has the same result as "x >- yANDx <- z".

Notes

1) The overloaded "AND" operators have two different types of operands. Likewise, there are two
different types possible for the first parameter of the BETWEEN functions. The effective type of
each operand is based on the text of the corresponding <value expression> in the <between predi-
cate>, as follows:

VALUEXPRESSIONct (typed according to program type) - used when the <value expression>
contains at least one of a <column specification>, a <set function specification>, an <indicator
specification>, or the <key word> USER

ct (program type) - used when the <value expression> does not contain a <column specification>,
a <set function specification>, an <indicator specification>, or the <key word> USER

2) The Ada/SOL <between predicate> conforms to the ANSI SQL <between predicate>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
SRI SRI 3

- SR2 4

GR1-GR2 GR1-GR2

GR3 -

3) Ada/SQL SRI expresses one aspect of Ada/SQL's strong typing.

4) A boolean <value expression> containing neither a <column specification> nor an <indicator
specification> is, as far as the effective Ada declarations are concerned, of a user-defined (or
predefined) program type. If two such <value expression>s of a boolean program type were to be
used as the last two <value expression>s in a <between predicate>, then the effective Ada/SQL
declaration of the "AND" operator separating them would redefine the predefined boolean "and"
operator for that program type. By prohibiting the last two <value expression>s in a <between
predicate> from both being of a boolean program type, SR2 prevents this undesirable situation.
Note that the effective Ada/SQL declarations are such that a <value expression> for program data
type ct, containing a <column specification> or an <indicator specification>, when u-ed in a
<between predicate>, effectively returns an object of type VALUF XPRESSIONct. Thus, the
effective Ada/SQL declaration of an "AND" operator with at least one parameter of type
VALUE&EXPRESSION.ct does not redefine the predefined "and" operator with parameters of
data type ct.

The restriction of Ada/SQL SR2 should actually have virtually no impact on Ada/SQL

Database Language Ada/SQL
138

UNCLASSIFIED

programmers, because the limited range of boolean values makes their use in a <between predi-
cate> extremely limited. If a programmer insists upon using boolean values in a <between predi-
cate>, then one of the last two <value expression>s can be expressed as an <indicator
specification> to comply with Ada/SQL SR2, if neither of these <value expressio,>s contain a
<column specification>. For example, the following violates SR2 (assume that BI and B2 are pro-
gram variables of the same boolean data type, and that x is a <value expression> of that data type):

. . . BETWEEN (x , B1 ANDD2)

However, the following has the exact same effect, and is permitted:

BETWEEN (x , INDICATOR (B1) AND B2)

5) Ada/SQL does not permit the NOT <key word> in a <between predicate>. Ada/SQL syntax
does, however, permit the sense of a <between predicate> to be negated, since the NOT <key
word> from <boolean factor> can precede a <between predicate>.

*

C Common elements

139

UNCLASSIFIED

5. 13 -Cha predicate>

Function

Specify a quantified comparison.

Format

<in predicate>::
{IS.JN I NOT-IN }(<value expression> ,{<subquerY> I<in value list> }

<in value list> :
<value specification> { or <value specification>}

Effective Ada Declarations

For a program data type ct:

type IN VALUELISTct is private;

funct ion IS -IN (LEFT :VALUEEXPRESSION-at ; RIGHT SUBQUERYCt
return SEARCHCONDITION;

function ISIN (LEFT :VALUEEXPRESSION-at ; RIGHT INVALUELISTct
return SEARCHCONDITION;

function ISIN (LEFT :at ; RIGHT SUBQUERYct
return SEARCHCONDITION;

function IS -IN (LEFT :ct ; RIGHT IN VALUELISTct
return SEARCHCONDITION;

function NOTIN (LEFT :VALUE-EXPRESSION-at ; RIGHT SUBQUERYct
return SEARCHCONDITION;

function NOT-IN (LEFT :VALUEEXPRESSIONct ; RIGHT IN VALUELIST_ct
return SEARCHCONDITION;

function NOT-IN (LEFT : t ; RIGHT SUBQUERY Ct
return SEARCHCONDITION;

function NOT-IN (LEFT : t ; RIGHT INVALUELISTct
return SEARCHCONDITION;

function NorN
LEFT VALUESPECIFICATION-at;
RIGHT VALUE_SPECIFICATION at) return INVALUE_LIST-at;

function "or" (LEFT :VALUE SPECIFICATIONct ; RIGHT :at
return INVALUELIST-ct;

Database Language Ada1SQL14

UNCASSIFIED

function *or* (LEFT : ct ; RIGHT VALUESPECIFICATIONot
return INVALUE_LIST ot;

function "or (LEFT Ct ; RIGHT ct) return INVALUE_LISTCt;

function *or* (LEFT IN-VALUELIST_ct ; RIGHT VALUESPECIFICATIONct
return INVALUELIST ct;

function or* (LEFT : INVALUELISTct ; RIGHT ct
return INVALUELISTct;

Example

PRIMARY MANAGER,
ALTERNATEMANAGER EMPLOYEENAME;

CURSOR CURSORNAME;

DECLAR (CURSOR , CURSORFOR ->
SELEC ('*',

FROM -> EMPLOYEE,
WHERE -> IS-IN (MANAGER , PRIMARY_MANAGER or ALTERNATEMANAGER)));

DECLAR (CURSOR , CURSORFOR->
SELEC ('"*,

FROM -> EMPLOYEE,
WHERE -) NOT-IN (MANAGER

SELEC (MANAGER,
FROM = EMPLOYEE,

GROUPBY " MANAGER,
HAVING -) AVG (SALARY) > 20000.00))));

Syntu Rules

1) The data types of the first <value expression> and the <subquery> or all <value specification>s in
the <in value fist> shall be the same.

2) If an <in value list> is used with boolean <value specification>s, then at least one of the first two

<value specification>s in the <in value list> shall contain an <indicator specification>.

General Rules

1) Let x denote the result of the <value expression>. Let S denote the result of the <subquery> as in
a <quantified predicate>, or the values specified by the <in value list>.

2) "IS.JN (x, S)" has the same result as "EQ (x, ANY (S))". "NOT-IN (x, S)" has the same
result as "NOT IS-JN (x, S)".

Notes

Common elements
141

UNCLASSIFIED

1) There are four ISJN (similarly, NOT.JN) functions effectively declared for each program data
type. The functions differ in the types of the LEFT and RIGHT parameters, based on the text of the
<in predicate> as follows:

LEFT of type VALUE.EXPRESSIONct (typed according to program type) - used when the
<value expression> contains at least one of a <column specification>, a <set function
specification>, an <indicator specification>, or the <key word> USER

LEFT of type ct (program type) - used when the <value expression> does not contain a <column
specification>, a <set function specification>, an <indicator specification>, or the <key word>
USER

RIGHT of type SUBQUERY.ct (typed according to program type) - used when a <subquery> is
specified

RIGHT of type INVALUE-LISTct (typed according to program type) - used when an <in value
list> is specified

2) The overloaded "or" operators have three different types of operands. The effective type of each
operand is based on the text of the corresponding <value specification> in the <in value list>, as
follows:

INVALUELISTct (typed according to program type) - always used for the left operand of the
second and succeeding "or"s in an <in value list>; preceding "or" operators, which are applied
from left to right in accordance with Ada rules, effectively return a result of type
INVALUEJLISTct to be used as the left operand of the next "or". The remaining two types may
be used for either operand of the first "or" in an <in value list>, and for the right operand of all
succeeding "or's.

VALUE,.SPECIFCATIONct (typed according to program type) - used when the <value
specification> contains an <indicator specification> or the <key word> USER

ct (program type) - used when the <value specification> contains neither an <indicator
specification> nor the <key word> USER

3) The Ada/SQL <in predicate> conforms to the ANSI SQL <in predicate>. The correspondence
between Ada/SOL rules and ANSI SOL rules is as follows:

ANSI SQL Ada/SQL See Notes

9SR - SR1 4
-- SR2 5

GR1-GR2 GR1-GR2 -

4) Ada/SQL SR1 expresses one aspect of Ada/SQL's strong typing.

Database Language Ada/SQL
142

UNCLASSIFIED

5) A boolean <value specification> not containing an <indicator specification> is, as far as the
effective Ada declarations are concerned, of a user-defined (or predefined) program type. If two
such <value specification>s of a boolean program type were to be used as the first two <value
specification>s within an <in value list>, then it would not be clear whether the "or" separating the
<value specification>s should be taken as the predefined boolean "or" or as the Ada/SQL <value
specification> separator. Furthermore, the effective Ada declarations could not be defined con-
sistently with such ambiguity. By requiring an <indicator specification> in one of the first two
<value specification>s in an <in value list>, SR2 ensures that this ambiguity is avoided. Note that
the effective Ada declarations are such that a <value specification> for program data type ct, con-
taining an <indicator specification>, when used within an <in value list>, effectively returns an
object of type VALUESPECIFICATION-ct. Thus, the effective Ada/SQL "or" operator with at
least one parameter of type VALUE-SPECIFICATION-ct is distinct from the predefined "or"
operator with parameters of data type ct. The restriction of Ada/SQL SR2 should actually have vir-
tually no impact on Ada/SQL programmers, because the limited range of boolean values makes
their use in an <in value list> extremely limited. If a programmer insists upon using boolean values
in an <in value list>, then one of the <value speciflication>s can be expressed as an <indicator
specification> to comply with Ada/SQL SR2. For example, the following violates SR2 (assume
that BI and B2 are program variables of the same boolean data type, and that x is a <value expres-
sion> of that data type):

. . . IS-IN (x , B1 or B2)

However, the following has the exact same effect, and is permitted:

. . . IS-IN (x , INDICATOR (B1) or B2)

6) The original Ada/SQL definition permitted only a single <value specification> in an <in value
list>. ANSI SQL requires at least two <value specification>s in an <in value list>, and Ada/SQL
now has the same requirement. A program executing an Ada/SQL statement with a single <value
specification> in an <in value list> is erroneous with Release 1 implementations; later implementa-
tions will explicitly check for this situation.

Common elements
143

VNCLASSBUID

5.14 <like predicate>

Function

Specify a pattern-match comparison.

Format

<like predicate> ::-
LIKE (<column specification>, <pattern>

(, ESCAPE-> <esape character>])

<pattern> ::-
<value specification>

<escape character> ::-

<value specification>

Effective Ada Declarations

For a character string program data type ct, with components of data type
cct:

funet ion LIKE
(COLUMN COLUMN SPECIFICATION ct;
PATTERN VALUE_SPECIFICATIONct) return SEARCHCONDITION;

function LIKE
(COLUMN COLUMN SPECIFICATION ct;
PATTERN ct) return SEARCH_CONDITION;

function LIKE
(COLUMN COLUMN_SPECIFICATION-ct;
PATTERN VALUE_SPECIFICATION_Ct;
ESCAPE at) return SEARCHCONDITION;

function LIKE
COLUMN COLUMN_SPECIFICATION ct;
PATTERN :t;
ESCAPE ct) return SEARCHCONDITION;

funetion LIKE
(COLUMN COLUMN SPECIFICATION ct;
PATTERN VALUE_SPECIFICATTONat;
ESCAPE cat) return SEARCHCONDITION;

function LIKE
(COLUMN COLUMN_SPECIFICATIONct;
PATTERN at;
ESCAPE cct) return SEARCHCONDITION;

Database Language Ada/SQL
144

INASSIFIED

Example

LAST NAME : EMPLOYEE NAME; -- presumably met to, for example, *%Smith"
CURSOR : CURSORNAME;

DECLAR (CURSOR , CURSORFOR-)
SELEC (
FROM -> EIPLOYEE,
WHERE -) LIKE (NAME , LASTNAME)));

DECLAR (CURSOR , CURSOR-FOR)
SELEC ('*',
FROM - D4PLOYEE,
WHERE -> LIKE (NAME , LASTNAME , ESCAPE -))));

variation: ''

Sn ules

1) The <column specification> shall reference a character string column.

2) The data type of the <pattern> shall be the same as the data type of the <column specification>.

3) The data type of the <escape character> shall be either: that of the <column specification>, or
that of (character) components of the <column specification>.

4) The <value specification> of the <escape character> shall not contain an <indicator
specification> or the <key word> USER.

General Rules

1) If the data type of the <escape character> is the same as the data type of the <column
specification>, then the value of the <escape character> shall be a character string of length 1; oth-
erwise, the DATA-EXCEPTION exception is raised.

2) Let x denote the value referenced by the <column specification> and let y denote the result of the
<value specification> of the <pattern>.

3) Ifyis not the null value, then:

Case:

a) If an <escape character> is specified, then:

i) Let z denote the result of the <value specification> of the <escape character>.

C Common elements
145

UNCLASSIFIED

ii) There shall be a partitioning of the string y into substrings such that each substring is of
length I or 2, no substring of length 1 is the escape character z, and each substring of
length 2 is the escape character z followed by either the escape character z, an under-
score character, or the percent sign character; otherwise, the DATAEXCEPTION
exception is raised.

In that partitioning of y, each substring of length 2 represents a single occurrence of the
second character of that substring. Each substring of length 1 that is the underscore
character represents an arbitrary character specifier. Each mabstring of length I that is
the percent sign character represents an arbitrary string specifie. Each substring of
length 1 that is neither the underscore character nor the percent sign character
represents the character that it contains.

b) If an <escape character> is not specified, then each underscore character in y represents an
arbitrary character specifier, each percent sign character in y represents an arbitrary string
specifier, and each character in y that is neither the underscore character nor the percent sign
character represents itself.

4) If y is not the null value, then the string y is a sequence of the minimum number of substring
specifiers such that each <character> of y is part of exactly one substring specifier. A substring
specifier is an arbitrary character specifier, an arbitrary string specifier, or any sequence of
<character>s other than an arbitrary character specifier or an arbitrary string specifier.

5) 'LIKE (x , y)" is unknown if x or y is the null value. If x and y are nonnull values, then "LIKE (x,
y)" is either true or false.

6) "LIKE (x , y)" is true if there exists a partitioning of x into substrings such that:

a) A substring of x is a sequence of zero or more contiguous <character>s of x and each <char-
acter> of x is part of exactly one substring.

b) If the i-th substring specifier of y is an arbitrary character specifier, the i-th substring of x is any
single <character>.

c) If the i-th substring specifier of y is an arbitrary string specifier, the i-th substring of x is any
sequence of zero or more <character>s.

d) If the i-th substring specifier of y is neither an arbitrary character specifier nor an arbitrary
string specifier, the i-th substring of x is equal to that substring specifier and has the same
length as that substring specifier.

e) The number of substrings of x is equal to the number of substring specifiers of y.

Notes

1) There are six LIKE functions effectively declared for each character string program data type. The
functions differ in the type of the PATTERN parameter and the type and existence of the ESCAPE

Database Language Ada/SQL
146

UNCLASSIFIED

parameter, baed on the text of the <like predicate> as follows:

PATTERN of type VALUESPECIFICATION..ct (typed according to program type) - used when
the <pattern> <value specification> contains an <indicator specification> or the <key word>
USER

PATTERN of type ct (program type) - used when the <pattern> <value specification> contains
neither an <indicator specification> nor the <key word> USER

ESCAPE not present - used when the optional <escape character> is not specified

ESCAPE of type ct (program character string type) - used when the optional <escape character> is
specified as a character string of the same data type as the <column specification>

ESCAPE of type cct (program character type) - used when the optional <escape character> is
specified as a character of the same data type as the components of the <column specification>

2) The Ada/SQL <like predicate> conforms to the ANSI SOL <like predicate>. The correspon-
dence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
SRI SRI -

SR2 SR2 3
SR3 SR3-SR4,GRI 4
GRI GR2 -

GR2-GR3 GR3-GR4 5
GR4-GR5 GR5-GR6 -

GR6 6

3) Ada/SQL Sl2 expresses one aspect of Ada/SQL's strong typing. Note that the data type of the
<column specification> must be an unconstrained character string in order for the <pattern> to be
of the same data type but of different (presumably shorter) length. The subtype of the <column
specification> may be constrained, and may, of course, be different from the subtype of the <pat-
tern>.

4) The original definition of Ada/SQL required that the dats type of the <escape character> be the
same as the data type of the <column specification>, and provision for this is retained for upward
compatibility Since the <escape character> is required to be only a single character, it is now also
permitted to be of the same data type as the components of the <column specification>.

Ada/SQL SR3 expresses one aspect of Ada/SQL's strong typing. The length restriction of ANSI
SQL SR3, the fact that the <escape character> must be a single character, is expressed in
Ada/SQL GRI, since Ada constraint checking is performed at runtime.

Although ANSI SQL places no syntax restrictions on the <escape character>, the implication is

C Common elements
147

UNCLASSIFIED

that it cannot be null. Ada/SQL SR4 explicitly forbids the <escape character> from being null, by
not allowing its <value specification> to include an <indicator specification>. Use of the <key
word> USER as the <escape character>, although syntactically permitted by <value
specification>, would be.meaningless, and so is explicitly prohibited by Ada/SQL SR4.

Release 1 implementations do not support specification of an <escape character> within a <like
predicate>.

5) The Ada/SQL GRs include the qualification "if y is not the null value", because it is not at all clear
how the ANSI SQL GR apply if y is the null value, although ANSI SOL GR4 clearly contemplates
the possibility.

6) Ada/SQL does not permit the NOT <key word> in a <like predicate>. Ada/SQL syntax does,
however, permit the sense of a <like predicate> to be negated, since the NOT <key word> from
<boolean factor> can precede a <like predicate>.

Database Language Ada/SOL
148

UNCLASSIFIED

5.15 <null predicate>

Function

Specify a test for a null value.

Format

<null predicate> ::-
{ IS.NULL I IS_NOTNULL } (<column specification>)

Effective Ads Declarations

function IS-NULL (LEFT : COLUMN SPECIFICATION) return SEARCHCONDITION;

function ISNOTNULL (LEFT : COLUMN SPECIFICATION
return SEARCHCONDITION;

Example

CURSOR : CURSORNAME;

DECLAR (CURSOR , CURSORFOR-)
SELEC ('*',

FROM > EPLOYEE,
WHERE -> ISNULL (MANAGER))); -- variation: ISNOTNULL

Syntax Rules

None.

General Rules

1) Let x denote the value referenced by the <column specification>.

2) "IS..NULL (x)" is either true or false.

3) "IS-NULL (x)" is true if and only if x is the null value.

4) "ISNOTNULL (x)" has the same result as "NOT ISNULL (x)".

Notes

1) The Ad./SQL <null predicate> conforms to the ANSI SQL <null predicate>.

2) Release 1 implementations do not support the <null predicate>.

Common elements
149

UNCLASSIFIE

5. 16 <qsamtffled predicate>

Function

Specify a quantified comparison.

Format

<quantified predicate>:-
<equality operator> (<value expression> ,<quantifier> (<subquery>)
I<value expression> <ordering operator> <quantifier> (<subquery>)

<quantifier> ::-
<all> I <some>

<all> ::- ALLL

<some> ::- SOME I ANY

Effective Ada Declarations

For a program data typ ct:

type QUANTIFIER-at Is private;

function ALLL (LEFT SUEQUERY -at) return QUANTIFIER-at;

function SOME (LEFT SUBQUERY _at) return QUANTIFIER-at;

funct ion ANY (LEFT SUEQUERYct) return QUANTIFIER-at;

function EQ (LEFT VALUEEXPRESSION-ct ; RIGHT QUANTIFIER at)

return SEARCH-CONDITION;

function EQ (LEFT at ; RIGHT :QUANTIFIER at)return SEARCHCONDITION;

function NE (LEFT VALUEEPRESSION-ct ; RIGHT QUANTIFIER ct
return SEARCHCONDITION;

function NE CLEFT at , RIGHT :QUANTiFIER at)return SEARCHCONDITION;

function I(u* LEFT VALUE EXPRESSION at , RIGHT QUANTIFIER at)

return SEARCHCONDITION;

function "((LEFT : t ; RIGHT Q UANTIFIER ci
return SEARCHCONDITION;

function 0>0 (LEFT :VALUEEXPRESSION at ;RIGHT QUANTIFIER at)
return SEARCH-CONDITION;

Database Language Ada/SQL
150

NLIASSIFIED

function *)* (LEFT : at ; RIGHT QUANTIFIER ct
return SEARCH-CONDITION;

funct ion *(. (LEFT : VALUE_EXPRESSION at ; RIGHT : QUANTIFIERCt
return SEARCH-CONDITION;

function "(W (LEFT : Ct ; RIGHT : QUANTIFIERct
return SEARCH-CONDITION;

function ")-w (LEFT : VALUE _EXPRESSION Ct ; RIGHT QUANTIFIERct
re turn SEARCH-CONDITION;

function ")- (LEFT : Ct ; RIGHT : QUANTIFIERct
return SEARCH-CONDITION;

Example

package E Is new EIPLOYEECORRELATION.NAME ("E');

CURSOR CURSORNAME;

DECLAR (CURSOR , CURSORFOR -)
SELEC ('"*,

FROM -) E.]DIPLOYEE,

WHERE -) SALARY)= ALLL (
SELEC (SALARY,
FROM ") MPLOYEE,

WHERE -) EO (MANAGER , E.MANAGER)))));

DECLAR (CURSOR , CURSORFOR ->
SELEC ('.',
FROM -) EIPLOYEE,
WHERE -) EQ (NAME , ANY (-- variation: SOME

SELEC (MANAGER,
FROM-> ZMPLOYEE)))));

Syntu Rules

1) The data types of the <value expression> and the <subquery> shall be the same.

General Rules

1) Let x denote the result of the <value expression> and let S denote the
result of the <subquery>.

2) The result of the <quantified predicate> "<equality operator> (x, <quantifier> (S))" or "x
<ordering operator> <quantifier> (S)" is derived by the application of the implied <comparison
predicate> "<equality operator> (x , s)" or "x <ordering operator> a" to every value in S:

Case:

Common elements
151

UNCLASSII

a) If S is empty or if the implied <comparison predicate> is true for every value s in S, then the
<quantified predicate> with the <all> <quantifier> is true.

b) If the implied <comparison predicate> is false for at least one value s in S, then the
<quantified predicate> with the <al> <qualifier> is false.

c) If the implied <comparison predicate> is true for at least one value s in S, then the
<quantified predicate> with the <some> <qualifier> is true.

d) If S is empty or if the implied <comparison predicate> is false for every value s in S, then the

<quantified predicate> with the <some> <qualifier> is false.

e) If the <quantified predicate> is neither true nor false, then it is unknown.

Notes

1) There are two functions effectively declared for each operator that may be used in a <quantified
predicate>. The functions differ in the type of their first parameter, based on the text of the <value
expression> within the <quantified predicate> as foilows:

VALUEEXPRESSION.ct (typed according to program type) - used when the <value expression>
contains at least one of a <column specification>, a <set function specification>, an <indicator
specification>, or the <key word> USER

ct (program type) - used when the <value expression> does not contain any of a <column
specification>, a <set function specification>, an <indicator specification>, or the <key word>
USER

2) The Ada/SQL operators corresponding to ANSI SOL "-" and "<>" are written as prefix EQ and
NE, due to Ada restrictions on overloading infi' "-" and "/-".

3) The Ada/SQL <quantified predicate> conforms to the ANSI SOL <quantified predicate>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
SR1 SRI 4

GRI-GR2 GR1-GR2

4) SR1 expresses one aspect of Ada/SQL's strong typing.

5) Release 1 implementations do not support the <quantified predicate>.

Database Language Ada/SQL
152

UNCLASSIEDW

5.17 -Cexists predicate>

Function

Specify a test for an empty set.

Format

<exists predicate> :

EX(ISTS (<subquery>)

Effective Ada Declarations

functIon EXISTS (LEFT :SUNQUERY)return SEARCHCONDITION;

Example

package E Is new EMPLOYEECORRELATION.NAME (E")

CURSOR CURSORNAME;

DECLAR (CURSOR , CURSORFOR -
SELEC ("'1,

FROM -> E. IP LOYEE,
WHERE -> EXISTS(
SLC ("'1,

FROM -)EMPLOYEE,
WHERE -)EQ (MANAGER , E.NAME)))))

Syntax Rules

None.

General Rules

1) Let S denote the result of the <subquery>.

2) "EXISTS (S)"is either true or false.

3) "EXISTS(S)"is true if and only if Sis not empty.

Notes

1) The Ada/SQL <exists predicate> conforms to the ANSI SQL <exists predicate>.

2) Release 1 implementations do not support the <exists predicate>.

Common elements
153

UNCLASSIFIE

5.18 -4search condition>

Function

Specify a condition that is "true", "false", or "unknown" depending on the result of applying boolean
operators to specified conditions.

Format

<search condition> :
<boolean factor> [{AND <boolean factor>}..
I<boolean factor> [{OR <boolean factor>}J

<boolean factor> ::-
[NOT] <boolean priniaiy

<boolean primary> ::-
<predicate> I (<search condition>)

Effective Ada Declarations

type SEARCH-.CONDITION Is private;

NULLSEARCHk_CONDITION :constant SEARCHCONDITION;

function 6ANDQ (LEFT, RIGHT SEARCHCONDITION)return SEARCHCONDITION;

function OR' (LEFT, RIGHT SEARCHCONDITION)return SEARCHCONDITION;

function *NOT" (LEFT :SEARCH-CONDITION) return SEARCHCONDITION;

Example

PRIMARYMANAGER,
ALTERNATEMANAGER EMPLOYEE-NAME;
CURSOR CURSOR,_NAME;

DECLAR (CURSOR , CURSORFOR -
SELET 'P,,

FROM -) DPLWYEE,
WHERE)NOT BETWEEN (SALARY , 20_000.00 AND 30_000.00
AND CE0 (MANAGER ,PRIMARYMANAGER)
OR EQ (MANAGER ,ALTERNATEMANAGER))))

Syntax Rules

1) A <column specification> or <value expression> specified in a <search condition> is directly
contained in that <search condition> if the <column specification> or <value expression> is not
specified within a <set function specification> or a <subquery> of that <search condition>.

Database Language Ada/SQL
154

UNCLASSIFIED

Genera Rules

1) The result is derived by the application of the specified boolean operators to the conditions that
result from the application of each specified <predicate> to a given row of a table or a given
group of a grouped table. f boolean operators are not specified, then the result of the <search
condition> is the result of the specified <predicate>.

2) NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown. AND and OR are
defined by the following truth tables:

AND tr false unknown

fal °e false° w Ifalsdlfaowntrue true Ifalse unknownl
unknown unknown false unknown

OR tru false unknown
me tr e true true
false alse ae unknown

unknown true unknotrn enknown

3) Expressions within parentheses are evaluated first and when the order of evaluation is not
specified by parentheses, NOT is applied before AND and OR, and ANDs and ORs are
applied from left to right. (ANDs and ORs may not be intermixed without using parentheses to
clearly show precedence.)

4) When a <search condition> is applied to a row of a table, each reference to a column of that
table by a <column specification> directly contained in the <search condition> is a reference
to the value of that column in that row.

I Notes

1) Release 1 implementations do not support null values. Hence, "unknown" conditions cannot
be created.

2) The Ada/SQL <search condition> conforms to the ANSI SOL <search condition>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

(Common elements
155

UNCLASSIFIED

ANSI SQL Ada/SQL See Notes
SR1 SR1 -

GRl-GR2 GRl-GR2 -

GR3 J GR3 3
GR4 GR4 -

3) ANSI SQL provides precedence of AND over OR in <search condition>s. Ada, and hence
Ada/SQL, requires that expressions containing both ANDs and ORs be parenthesized to
clearly show the order of evaluation.

Database Language Ada/SQL
156

UNCLASSIFIED

5.19 <table expression>

Function

Specify a table or a grouped table.

Format

<table expression>
<from clause>

[,<where clause>]
[,<group by clause>]
[,<having clause>]

Effective Ada Declarations

see sections declaring FROM, WHERE, GROUP-BY, and HAVING <key word>s

Example

CURSOR CURSORNAME;

DECLAR (CURSOR , CURSOR-FOR-)
SELEC (' ,
FROM -> EMPLOYEE));

DECLAR (CURSOR , CURSOR-FOR ->

SELEC ('*',
FROM -) EMPLOYEE,

WHERE -> SALARY > 25_000.00));

DECLAR (CURSOR , CURSORFOR >
SELEC (MANAGER & AVG (SALARY),
FROM = EMPLOYEE,
GROUPBY = MANAGER,
HAVING -> AVG (SALARY) > 25000.00

Syntax Rules

1) If the table identified in the <from clause> is a grouped view, then the <table expression> shall not
contain a <where clause>, <group by clause>, or <having clause>.

General Rules

1) If all optional clauses are omitted, then the table is the result of the <from clause>. Otherwise,
each specified clause is applied to the result of the previously specified clause and the table is the
result of the application of the last specified clause. The result of a <table expression> is a derived
table in which the i-th column inherits the description of the i-th column of the table specified by the
<from clause>.

Common elements
157

UNCLASSIFIED

Notes

1) The Ada/SQL <table expression> conforms to the ANSI SQL <table expression>.

Database Language Ada/SQL
158

UNCLASSIFIED

5.20 <from clause>

Function

Specify a table derived from one or more named tables.

Format

<from clause> ::-
FROM -> <table reference> [{ & <table reference> } ...]

<table reference> ::-
[<correlation name>. I <table name>

Effective Ada Declarations

type FROK CLAUSE Is private;

function *&" (LEFT, RIGHT : FROM-CLAUSE) return FROMCLAUSE;

For a table t with <authorization identifier> a:

Within generic packages tCORRELATION.NAME and a tCORRELATION.NAME:

function t return FROMCLAUSE;

type TABLEREFERENCE I s
record

t : FROM_.CLAUSE;
end record;

function a return TABLEREFERENCE;

see also sections declaring FROM <key word>

Example

package E Is new DIPLOYEECORRELATION.NAME (E"); -- employees
package M Is new DMPLOYEECORRELATION.NAME ("NO); -- managers

CURSOR : CURSORNAME;

DECLAR (CURSOR , CURSOR-FOR -)
SELEC ('*',
FROM) MIPLOYEE,
WHERE -) SALARY > 25_000.00));

DECLAR (CURSOR , CURSORFOR-)
SELEC (ENAME & E.SALARY £ E.MANAGER,
FROM -) E.D4PLOYEE & M.EIPLOYEZ,

Cmsnon elemnts
159

IFI]I

UNCLSSIFIND

WE -) 0 (E.NANAGM , N.NAME)
AND E. SALARY) M. SALARY));

Synt Rules

1) A <table name> specified in a <table reference> is exposed in the containing <from clause> if
and only if that <table reference> does not specify a <correlation name>.

2) A <table name> that is exposed in a <from clause> shall not be the same as any other <table
name> that is exposed in that <from clause>.

3) A <correlation name> specified in a <table reference> shall not be the same as any other <corre-
lation name> specified in the containing <from clause>, and shall not be the same as the <table
identifier> of any <table name> that is exposed in the containing <from clause>.

4) The scope of <correlation name>s and exposed <table name>s specified in a <from clause> is
the innermost <subquery>, <query specification>, or <select statement> that contains the <table
expression> in which the <from clause> is contained. A <table name> that is specified in a
<from clause> has a scope defined by that <from clause> if and only if the <table name> is
exposed in that <from clause>.

5) If the table identified by <table name> is a grouped view, then the <from clause> shall contain
exactly one <table reference>.

6) Case:

a) If the <from clause> contains a single <table name>, then the description of the result of the
<from clause> is the same as the description of the table identified by that <table name>.

b) If the <from clause> contains more than one <table name>, then the description of the
result of the <from clause> is the concatenation of the descriptions of the tables identified by
those <table name>s, in the order in which the <table name>s appear in the <from
clause>.

7) If a <table reference> contains a <correlation name>, then that <correlation name> shall have
been declared for the table denoted by the <table name>, in exactly one of the <global variable
package>s or <local variable package>s that apply to the <Ada/SQL compilation unit> contain-
ing the <table reference>.

General Rules

1) The specification of a <correlation name> or exposed <table name> in a <table reference>
defines that <correlation name> or <table name> as a designator of the table identified by the
<table name> of that <table reference>.

Database Language Ada/SQL
160

UNCLASSFIED

2) Case:

a) H the <from clause> contains a single <table name>, then the result of the <from clause>
is the table identified by that <table name>.

b) If the <from clause> contains more than one <table name>, then the result of the <from
clause> is the extended Cartesian product of the tables identified by those <table name>s.
The extended Cartesian product, R, is the multi-set of all rows r such that r is the concatena-
tion of a row from each of the identified tables in the order in which they are identified. The
cardinality of R is the product of the cardinalities of the identified tables. The ordinal position
of a column in R is n+s, where n is the ordinal position of that column in the named table T
from which it is derived and a is the sum of the degrees of the tables identified before T in the
<from clause>.

Notes

1) The effective Ada declarations for functions a and t are used with <correlation name>s. Functions
returning FROM.CLAUSE are effectively declared for <table name>s (see 5.4), for use without
<correlation name>s.

The generic packages tCORRELAION.NAME and a-t-CORRELATION.NAME are used to
declare <correlation name>s for table a.t. For example, the <correlation name> cn may be
declared as:

package cn Is new tCORRELATION.NAME (Oen"); or

package cn Is new a_t_CORRELATION.NAME (cn');

The <table reference> cn.t effectively calls function t, declared within the generic package, to
return the appropriate FROM.CLAUSE value.

Likewise, the <table reference> cn.a.t effectively calls function a, declared within the generic pack-
age, to return a TABL&_REFERENCE value, then selects the t component of this value, which is
the appropriate FROM.CLAUSE value.

Note that the <correlation name> precedes the <table name> in an Ada/SQL <table reference>;
this is the reverse of ANSI SOL.

Release 1 implementations do not support <authorization identihier>s within <table name>s.
Hence, only generic package t.CORRELATION.NAME is available for table t, and function a is
not available within it.

2) The Ada/SQL <from clause> conforms to the ANSI SQL <from clause>.

Common elements
161

UNCLASSIFIED

5.21 <where daue>

Function

Specify a table derived by the application of a <search condition> to the result of the preceding <from
clause>.

Format

<where clause> ::-
WEFRE -> <search condition>

Effective Ada Declarations

see sections declaring WHERE <key word>

Example

CURSOR CURSOR-NAME;

DUCLAR (CURSOR , CURSOR_FOR-)
SELEC ('"',

FRO1 4) EMPLOYEE,
WHERE SALARY) 25000.00));

Syntax Rules

1) Let T denote the description of the result of the preceding <from clause>. Each <column
specification> directly contained in the <search condition> shall unambiguously reference a
column of T or be an outer reference.

NOTEM *Outer reference" is defined in 5.7, "<column specification>".

2) A <value expression> directly contained in the <search condition> shall not include a reference to
a column derived from a function.

3) If a <value expression> directly contained in the <search condition> is a <set function
specification>, then the <where clause> shall be contained in a <having clause> and the <column
specification> in the <set function specification> shall be an outer reference.

NOTE: "Outer reference" is defined in 5.7, "<column specification>".

General Rules

1) Let R denote the result of the <from clause>.

2) The <search condition> is applied to each row of R. The result of the <where clause> is a table of
those rows of R for which the result of the <search condition> is true.

Database Language Ada/SQL
162

UNCLASSIUIED

3) Each <subquery> in the <search condition> is effectively executed for each row of R and the
results used in the application of the <search condition> to the given row of R. If any executed
<subquery> contains an outer reference to a column of R, then the reference is to the value of that
column in the given row of R.

NOTE "Outer reference" is defined in 5.7, "<column specification>-.

Notes

1) The Ada/SQL <where clause> conforms to the ANSI SQL <where clause>.

Common elements
163

UNCLASSIFIED

5.22 4group by laus>

Function

Specify a grouped table derived by the application of the <group by clause> to the result of the previ-

ously specified clause.

Format

<group by clause> ::-
GROUPBY -> <column specification> [{ & <column specification> }...]

Effective Ads Declarations

type GROUPBY_CLAUSE Is privat e;

NULL_GROUPBYCLAUSE Cons tant GROUPBY CLAUSE;

function *&6 (LEFT GROUPBYCLAUSE ; RIGHT GROUPBY_CLAUSE
return GROUPBYCLAUSE;

see sections declaring GROUP-BY <key word>

Example

CURSOR CURSOR-NAME;

DECLAR (CURSOR , CURSORFOR-)

SELEC ("*',

FROM) APLOYEE,

WHERE -) NOT_IN (MANAGER
SELEC (MANAGER,
FRO4 -) EMPLOYEE,
GROUP.BY -) MANAGER,
HAVING ") AVG (SALARY)) 20000.00))));

DECLAR (CURSOR , CURSORFOR ")
SELEC (MANAGER 6 SALARY & COUNT ('

FROM) MPLOYEE,
GROUP BY ") MANAGER & SALARY));

Syntax Rules

1) Let T denote the description of the result of the preceding <from clause> or <where clause>.

2) Each <column specification> in the <group by clause> shall unambiguously reference a column of
T. A column referenced in a <group by clause> is a grouping column.

General Rules

Database Language Ada/SOL
164

UNCLASSIFIED

1) Let R denote the result of the preceding <from clause> or <where clause>.

2) The result of the <group by clause> is a partitioning of R into a set of groups. The set is the
minimum number of groups such that, for each grouping column of each group of more than one
row, all values of that grouping column are identical.

3) Every row of a given group contains the same value of a given grouping column. When a <search
condition> or <value expression> is applied to a group, a reference to a grouping column is a refer-
ence to that value.

Notes

1) Functions returning GROUP-BYCLAUSE are effectively declared for <column specification>
(see S.7).

2) The Ada/SQL <group by clause> conforms to the ANSI SQL <group by clause>.

C

Common elements
165

UNCLASSIFIM

5.23 4having dlaml>

Function

Specify a restriction on the grouped table resulting from the previous <group by clause> or <from
clause> by eliminating groups not meeting the <search condition>.

Format

<having clause> ::-
HAVING-> <search condition>

Fectdve Ads Declarations

see sections declaring HAVING <key word>

Example

CURSOR CURSOR NAME;

DECLAR (CURSOR , CURSORFOR -
SELZC ('",

FROM) DIPLOYEE,
WHERE ") NOT IN (MANAGER

SELEC (MANAGER,
FROM) EMPLOYEE,
GROUP-BY "> MANAGER,
HAVING -) AVG (SALARY) > 20_000.00))));

Syntax Rles

1) Let T denote the description of the result of the preceding <from clause>, <where clause>, or
<group by clause>. Each <column specification> directly contained in the <search condition>
shall unambiguously reference a grouping column of T or be an outer reference.

NOTEM "Outer reference" is defined in 5.7, "<column specification>".

2) Each <column specification> contained in a <subquery> in the <search condition> that refer-
ences a column of T shall reference a grouping column of T or shall be specified within a <set func-
tion specification>.

General Rules

1) Let R denote the result of the preceding <from clause>, <where clause>, or <group by clause>.
If that clause is not a <group by clause>, then R consists of a single group and does not have a
grouping column.

Database Language Ada/SQL
166

UNCLASSIElED

2) The <search condition> is applied to each group of R. The result of the <having clause> is a
grouped table of those groups of R for which the result of the <search condition> is true.

3) When the <search condition> is applied to a given group of R, that group is the argument or argu-
ment source of each <set function specification> directly contained in the <search condition>
unless the <column specification> in the <set function specification> is an outer reference.

NOTE: "Outer reference" is defined in 5.7, "<column specification>".

4) Each <subquery> in the <search condition> is effectively executed for each group of R and the
result used in the application of the <search condition> to the given group of R. If any executed
<subquery> contains an outer reference to a column of R, then the reference is to the values of that
column in the given group of R.

NOTE: "Outer reference" is defined in 5.7, "<column specification>".

Notes

1) The Ada/SQL <having clause> conforms to the ANSI SQL <having clause>.

16 Common elements
167

UNCLASSIFIED

5.24 <smbquery>

Specify a multi-set of values derived from the result of a <table expression>.

Format

<subquery>:
[SELEC I SELECT..ALL I SELECT.DISTINCT I SELEC-ALL ISELEC-DISTINCT]
(<result specification>,
<table expression>)

r <result specification> ::-
<value expression>

Effective Ada Declarations

-- see 9.10 for declaration of type STARTYPE

type SUBQuERY Is private

function SELEC
WHAT VALUE -EXPRESSION;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION :NULLSEARCHCONDITION;

SJP_-BY GROUPDY_-CLAUSE -NULLGROUPBYCLAUSE;

.AAVING SEARCHCONDITION -NULLSEARCHCONDITION

return SUDOUERY;

function SELEC-
(WHAT STAR _TYPE;

FROM FROM..CLAUSE;
WHERE SEARCHCONDITION -NULLSEARCHCONDITION;

GROUPD Y GROUPBYCLAUSE =NULLGROUPDY CLAUSE;
HAVING SEARCHCONDITION :NULLSEARCHCONDITION

return SUBQUERY;

function SELECTALL
(WHAT VALUEEXPRESSION;

FROM FROKCLAUSE;
WHERE SEARCHCONDITION :NULLSEARCHCONDITION;

GROUP_-BY GROUP_BY_CLAUSE -NULLGROUPDY-CLAUSE;

HAVING S EAR CHCONDITION :NULLSEARCHCONDITION

return SUIQUERY;

function SELECTALL
(WHAT STAR-TYPE;

FROM FROM-CLAUSE;

Database Language Ada/SQL16

I]NL4SIFIID

WHERE SEARCHCONDITION - NULLSEARCHCONDITION;
GROUP-BY GROUP-BY CLAUSE - NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION :-NULL SEARCHCONDITION

return SUBOUERY;

function SELECTDISTINCT
WHAT VALUE EXPRESSION;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION : NULLSEARCHCONDITION;
GROUPBY GROUPBYCLAUSE :-NULLGROUPBY_CLAUSE;
HAVING SEARCHCONDITION -NULLSEARCHCONDITION

return SUBQUERY;

function SELECT-DISTINCT
WHAT STARTYPE;

FROM FROM-CLAUSE;
WHERE SEARCHCONDITION - NULLSEARCHCONDITION;
GROUPBY GROUP_BYCLAUSE -NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION :-NULLSEARCHCONDITION

return SUBQUERY;

function SELECALL
WHAT VALUEEXPRESSION;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION -NULL-SEARCHCONDITION;

GROUP-BY GROUP-BY CLAUSE -NULLGROUP_BYCLAUSE;

HAVING SEARCHCONDITION :-NULLSEARCHCONDITION
return SUBQUERY renames SELECTALL;

function SELECALL
WHAT STARTYPE;
FROM FROM CLAUSE;
WHERE SEARCHCONDITION NULL SEARCHCONDITION;

GROUP BY GROUP BY CLAUSE NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION -NULL-SEARCHCONDITION

return SUBQUERY ren mea SELECTALL;

function SELECDISTINCT
WHAT VALUE EXPRESSION;

FROM FROMCLAUSE;
WHERE SEARCHCONDITION -NULL SEARCHCONDITION;
GROUP-BY GROUP BY-CLAUSE - NULLGROUPBY CLAUSE;
HAVING . SEARCHCONDITION NULLSEARCHCONDITION

return SUBOUERY renamea SELECTDISTINCT;

function SELEC DISTINCT
(WHAT STARTYPE;

FROM FROMCLAUSE;
WHERE SEARCH-CONDITION NULLSEARCHCONDITION;
GROUP BY GROUPBYCLAUSE -NULLGROUP BY CLAUSE;
HAVING SEARCHCONDITION :-NULL SEARCHCONDITION

return SUBOUERY renames SELECTDISTINCT;

CAnumn elements
169

ULASSIFIED

For a program data type ct:

type SUBQUERYct is private;

function SELEC
(WHAT ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION - NULLSEARCH CONDITION;
GROUPBY GROUPBY_CLAUSE - NULLGROUPBY CLAUSE;
HAVING SEARCHCONDITION - NULLSEARCHCONDITION

return SUBQUERY;

fune t ion SELEC
(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCH CONDITION - NULL-SEARCH CONDITION;
GROUPBY GROUPBYCLAUSE : NULLGROUPBY CLAUSE;
HAVING SEARCHCONDITION -NULLSEARCH CONDITION)

return SUBQUERYct;

fune t ion SELEC
WHAT VALUEEXPRESSION ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION : NULLSEARCH CONDITION;
GROUP BY GROUPBY CLAUSE NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION -NULLSEARCH-CONDITION

return SUBOUERY_ct;

function SELEC
WHAT STARTYPE;
FROM FROM CLAUSE;
WHERE SEARCHCOVITION : NULLSEARCHCONDITION;
GROUPBY GROUP_BYCLAUSE - NULLGROUPBYCLUSE;

HAVING SEARCHCONDITION -NULLSEARCHCONDITION

return SUBOUERYct;

function SELECT-ALL

(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION -NULL_SEARCHCONDITION;
GROUP BY GROUPBYCLAJSE - NULLGROUP BY CLAUSE;
HAVING SEARCHCONDITION -NULLSEARCHCONDITION

return SUBQUERY;

func t ion SELECT-ALL
(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION : NULL SEARCHCONDITION;
GROUP BY GROUPBYCLAUSE -NULLGROUPBY CLAUSE;
HAVING SEARCH-CONDITION NULL SEARCHCONDITION

return SUBQUERY_Ct;

Database Language Ada/SQL
170

UUASSIFIED

function SELECTALL
WHAT VALUEEXPRESSIONct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION :-NULL_SEARCH CONDITION;
GROUPBY GROUPBYCLAUSE :-NULL GROUPBY_CLAUSE;
HAVING SEARCHCONDITION - NULL SEARCHCONDITION

return SUBQUERY.ct;

function SELECTALL
WHAT STARTYPE;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION = NULLSEARCH CONDITION;
GROUP-BY GROUPBYCLAUSE :-NUIL GROUPBYCLAUSE;
HAVING SEARCH-CONDITION : NULL SEARCH CONDITION

return SUBQUERY ct;

function SELECTDISTINCT
(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION :-NULL SEARCHCONDITION;

GROUP BY GROUPBYCLAUSE - NULL GROUPBYCLAUSE;
HAVING SEARCHCONDITION - NULL SEARCHCONDITION

return SUBOUERY;

function SELECTDISTINCT
(WHAT :ct;

FROM FROM-CLAUSE;
WHERE SEARCHCONDITION :-NULL-SEARCHCONDITION;

GROUP -BY GROUPBYCLAUSE NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION NULL SEARCHCONDITION

return SUBQUERY ct;

function SELECTDISTINCT
WHAT VALUEEXPRESSIONct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION = NULLSEARCHCONDITION;

GROUPBY GROUP_BY_CLAUSE : NULL GROUPBYCLAUSE;
HAVING SEARCHCONDITION =-NULLSEARCH CONDITION

return SUBQUERY ct;

function SELECTDISTINCT
WHAT STARTYPE;

FROM FROMCLAUSE;
WHERE SEARCHCONDITION : NULLSEARCH CONDITION;
GROUP-BY GROUPBY_CLAUSE " NULLGROUP BY CLAUSE;
HAVING SEARCHCONDITION : NULLSEARCHCONDITION

return SUBQUERY ct;

function SELECALL
(WHAT ct;

FROM FROMCLAUSE;
WHERE SEiRCH CONDITION :-NULLSEARCHCONDITION;

Cmnmn elments
171

UNCIASSIFIE)

GROUPBY GROUPBYCLAUSE - NULLGROUP BY CLAUSE;
HAVING SEARCHCONDITION :-NULLSEARCHCONDITION

return SUBQUERY renames SELECTALL;

funt ion SELECALL
(WHAT :ct;

FROM FROM_CLAUSE;

WHERE SEARCHCONDITION :-NULLSEARCH-CONDITION;

GROUPBY GROUPBYCLAUSE : NULLGROUPBY CLAUSE;
HAVING SEARCHCONDITION NULL SEARCHCONDITION

return SUBQUERY_t renmes SELECT_ALL;

function SELECALL
WHAT VALUE EXPRESSIONat;
FROM FROMCLAUSE;

WHERE SEARCHCONDITION :-NULL SEARCHCONDITION;
GROUPBY GROUPBY_CLAUSE - NULLGROUPBY CLAUSE;
HAVING SEARCHCONDITION NULLSEARCHCONDITION

return SUBOUERY_ct renamis SELECTALL;

function SELECALL
(WHAT STARTYPE;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION :-NULLSEARCHCONDITION;

GROUPBY GROUPBYCLAUSE = NULLGROUPBY_CLAUSE;
HAVING SEARCHCONDITION -NULLSEARCHCONDITION

return SUBQUERY_ct renmes SELECTALL;

function SELECDISTINCT

(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION -NULLSEARCHCONDITION;

GROUPBY GROUPBYCLAUSE :-NULL GROUPBYCLAUSE;
HAVING SEARCHCONDITION : NULLSEARCHCONDITION

return SUBQUERY renames SELECTDISTINCT;

function SELECDISTINCT

(WHAT :ct;
FROM FROMCLAUSE;

WHERE SEARCHCONDITION - NULLSEARCHCONDITION;
GROUPBY GROUPBYCLAUSE - NULL GROUP BY CLAUSE;
HAVING SEARCHCONDITION : NULLSEARCIICONDITION

return SUBOUERY_ct renames SELECTDISTINCT;

function SELECDISTINCT
(WHAT VALUE EXPRESSIONat;
FROM FROMCLAUSE.
WHERE SEARCHCONDITION - NULLSEARCHCONDITION;
GROUPBY GROUPBYCLAUSE - NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION :-NULLSEARCHCONDITION

return SUBQUERYct renames SELECTDISTINCT;

Database Language Ada/SQL
172

UNCISSIFIED

function SELECDISTINCT
WHAT STARTYPE;
FROM : FROMCLAUSE;
WHERE SEARCHCONDITION :m NULLSEARCHCONDITION;
GROUPBY GROUPBY_CLAUSE :-NULLGROUPBY CLAUSE;
HAVING SEARCH-CONDITION :-NULL_SEARCHCONDITION

return SUBOUERYct renames SELECTDISTINCT;

Example

CURSOR CURSOR-NAME;

DECLAR (CURSOR , CURSOR-FOR-)
SELEC ('*',

FROM -> EMPLOYEE,
WHERE -) SALARY)

SELEC (AVG (SALARY), -- variations: SELECT ALL, SELECTDISTINCT,
FROM-) EMPLOYEE))); -- SELECALL, SELECDISTINCT

DECLAR (CURSOR , CURSORFOR ->
SELEC ('*',
FROM) EMPLOYEE,

WHERE) IS_IN (NAME
SELEC ('*', -- variations: SELECTALL, SELECTDISTINCT,

FROM -) MANAGERS)))); -- SELECALL, SELECDISTINCT

- assume MANAGERS is a database table with one column, containing the names
- of all managers

Syntax Rules

1) Specif)ing SELEC..ALL is equivalent to specifying SELECT-ALL; specifying
SELEC.DISTINCT is equivalent to specifying SELECT.DISTINCT.

2) The applicable <privileges> for each <table name> contained in the <table expression> shall
include SELEC.

NOTEs The "applicable <privileges>" for a <table name> are defined in 6.6, "<privilege
definition>".

3) Case:

a) If the <result specification> '*' is specified in a <subquery> of any <predicate> other than
an <exists predicate>, then the aegree of the <table expression> shall be 1, and the <result
specification> is equivalent to a <value expression> consisting of a <column specification>
that references the sole column of the <table expression>.

b) If the <result specification> '*' is specified in a <subquery> of an <exists predicate>, then
the <result specification> is equivalent to an arbitrary <value expression> that does not

Common elements
173

UNCLASSIFIED

include a <set function specification> and that is allowed in the <subquery>.

4) The data type of the values of the <subquery> is the data type of the implicit or explicit <value
expression>.

5) Let R denote the result of the <table expression>.

6) Each <column specification> in the <value expression> shall unambiguously reference a column
of R.

7) If R is a grouped view, then the <result specification> shall not contain a <set function
specification>.

8) If R is a grouped table, then each <column specification> in the <value expression> shall refer-
ence a grouping column or be specified within a <set function specification>. If R is not a grouped
table and the <value expression> includes a <set function specification>, then each <column
specification> in the <value expression> shall be specified within a <set function specification>.

9) The -DISTINCT suffix shall not be specified on more than one <key word> in a <subquery>,
excluding any <subquery> contained in that <subquery>.

10) If a <subquery> is specified in a <comparison predicate>, then the <table expression> shall not

contain a <group by clause> or a <having clause> and shall not identify a grouped view.

General Rules

1) If R is not a grouped table and the <value expression> includes a <set function specification>,
then R is the argument or argument source of each <set function specification> in the <value
expression> and the result of the <subquery> is the value specified by the <value expression>.

2) If R is not a grouped table and the <value expression> does not include a <set function
specification>, then the <value expression> is applied to each row of R yielding a multi-set of n
values, where n is the cardinality of R. If neither SELECT-DISTINCT nor SELEC.DISTINCT is
specified, then the multi-set is the result of the <subquery>. If SELECT-DISTINCT or
SELEC..DISTINCT is specified, then the result of the <subquery> is the set of values derived from
that multi-set by the elimination of any redundant duplicate values.

3) If R is a grouped table, then the <value expression> is applied to each group of R yielding a multi-
set of n values, where n is the number of groups in R. When the <value expression> is applied to a
given group of R, that group is the argument or argument source of each <set function
specification> in the <value expression>. If neither SELECT-DISTINCT nor
SELEC..DISTINCT is specified, then the multi-set is the result of the <subquery>. If
SELECT-DISTINCT or SELEC.DISTINCT is specified, then the result of the <subquery> is the
set of values derived from that multi-set by the elimination of any redundant duplicate values.

Notes

Database Language Ada/SQL
174

UNCLASSIFIED

1) There are six <subquery> functions effectively declared for each <key word> that may be used to
introduce the construct. The functions differ in the type of the their first parameter and their return
type, based on the text and context of the <subquery> as follows:

Return type SUBQUERY - used in contexts where the data type of the <subquery> is not impor-
tant: <exists predicate>

Return type SUBQUERY.ct (typed according to program type) - used in contexts where strong typ-
ing is applied to the <subquery>: <comparison predicate>, <in predicate>, <quantified predi-
cate>

Parameter type VALU_,EXPRESSION - used only with return type SLBQUERY; used when the
<result specification> is a <value expression> containing at least one of a <column
specification>, a <set function specification>, an <indicator specification>, or the <key word>
USER

Parameter type VALUE.EXPRESSION.ct (typed according to program type) - used only with
return type SUBQUERY.ct; used when the <result specification> is a <value expression> con-
taining at least one of a <column specification>, a <set function specification>, an <indicator
specification>, or the <key word> USER

Parameter type ct (program type) - used with either return type; used when the <result
specification> is a <value expression> not containing a <column specification>, a <set function
specification>, an <indicator specification>, or the <keyword> USER

Parameter type STAR-TYPE - used with either return type; used when the <result specification> is

2) The Ada/SQL <subquery> conforms to the ANSI SQL <subquery>. The correspondence
between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes

SR1 3
SR1-SR9 SR2-SR10 -

GR1-GR3 GR1-GR3 -

3) The <key word>s SELECT.ALL and SELECTDISTINCT are those originally defined for
Ada/SQL, and are provided for upward compatibility. SELECALL and SELECJDISTINCT are
provided to use the same SELEC keyword as for <privileges> and because some users have
expressed a preference for them. Release 1 implementations do not recognize the new <key
word>s.

Common elements
175

UNCLASSiFIE

44 5.25 <query specification>'

Function

Specify a table derived from the result of a <table expression>.

Format

<query specification>
[SE2LEC I SELECT-.ALL I SELECT-DISTINCT I SELEC..ALL ISELECJ)ISTINCTI
(<select list>,
<table expression>)

<select list> ::-
<value expression> ({& <value expression>}
<value expression> [{and <value expression>) .

Effective Ada Declarations

-- see 8.10 for declaration of type STAR-TYPE

type QUERY_-SPECIFICATION Is private;

type SELTTLIST Is private;

function SELEC
(WHAT SELECT-LIST;
FROM FROM CLAUSE;
WHERE SEARCH CONDITION NULLSEARCH CONDITION;
GROUP_-BY GROUPBY_-CLAUSE -NULL GROUPBYCLAUSE;
HAVING SEARCH CONDITION -NULLSEARCHCONDITION

return QUERYSPECIFICATION;

function SELEC
WHAT VALUEEXPRESSION;.
FROM FROMCLAUSE;
WHERE SEARCH-CONDITION -NULLSEARCH CONDITION;
GROUPBY GROUP_BY_CLAUSE NULL GROUP_DYCLAUSE;
HAVING SEARCH-CONDITION NULLSEARCH_CONDITION

return QUERYSPECIFICATION,

function SELEC
WHAT STAR-TYPE;,
FROM FROM-CLAUSE;
WHERE SEARCH-CONDITION -NULLSEARCHCONDITION;

GROUPBY GROUPBYCLAUSE -NULL-GROUP_-BY_-CLAUSE;

HAVING SEARCH-CONDITION -NULL SEARCHCONDITION
return QUERYSPECIFICATION;

Database Language Ada/SQL
176

U(NASSIFIUD

fune tion SELECTALL
(WHAT : SELECTLIST;

FROM : FROMCLAUSE;
WHERE : SEARCH_CONDITION NULLSEARCHCONDITION;
GROUP_BY : GROUP_BY_CLAUSE -NULL_GROUP_BYCLAUSE;
RAVING : SEARCH CONDITION :-NULLSEARCHCONDITION

return QUERY_SPECIFICATION;

function SELECTALL
WHAT VALUE EXPRESSION;
FROM FROMCLAUSE;
WHERE SEARCH_CONDITION :-NULLSEARCHCONDITION;
GROUP_.BY GROUPBYCLAUSE - NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION -NULLSEARCHCONDITION)

return QUERY._SPECIFICATION;

function SELECTALL
WHAT STAR TYPE;
FROM FROM CLAUSE;

WHERE SEARCHCONDITION NULLSEARCHCONDITION;
GROUP_BY GROUPBYCLAUSE NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION NULLSEARCHCONDITION

return QUERY_ SPECIFICATION;

function SELECTDISTINCT
(WHAT SELECTLIST;

FROM FROM CLAUSE;
WHERE SEARCHCONDITION : NULLSEARCHCONDITION;
GROUPBY GROUPBYCLAUSE : NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION : NULLSEARCHCONDITION

return QUERY_SPECIFICATION;

function SELECTDISTINCT
(WHAT VALUEEXPRESSION;

FROM FROM-CLAUSE;
WHERE SEARCHCONDITION :-NULLSEARCHCONDITION;
GROUPBY GROUPBYCLAUSE - NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION -NULLSEARCHCONDITION

return QUERYSPECIFICATION;

function SELECTDISTINCT

(WHAT STAR-TYPE;
FROM FROMCLAUSE;
WHERE SEARCH-CONDITION : NULLSEARCHCONDITION;
GROUP_BY GROUPBYCLAUSE : NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION " NULLSEARCHCONDITION

return QUERYSPECIFICATION;

function SELECALL
WHAT SELECT-LIST;
FROM FROM-CLAUSE;
WHERE SEARCHCONDITION : NULLSEARCHCONDITION;

-Amun e Iementa
177

[LCIASSIFIED

GROUPBY GROUPBYCLAUSE -NULLGROUPBYCLAUSE;

HAVING SEARCH_CONDITION - NULLSEARCHCONDITION-)

return QUERY SPECIFICATION renUmes SELECTALL;

function SELE_ALL
WHAT VALUE EXPRESSION;
FROM FROM_CLAUSE;

WHERE SEARCHCONDITION NULLSEARCHCONDITION;
GROUP -BY GROUPDY_CLAUSE - NULL_GROUPBY CLAUSE;
HAVING SEARCH CONDITION : NULL_SEARCHCONDITION

return QUERY_SPECIFICATION renames SELECTALL;

function SELEC ALL
WHAT STARTYPE;

FROM FROMCLAUSE;
WHERE SEARCHCONDITION -NULLSEARCHCONDITION;

GROUP BY GROUPBY_CLAUSE - NULLGROUPBYCLAUSE;
HAVING SEARCHCONDITION NULLSEARCHCONDITION

return QUERY_SPECIFICATION rennae SELECTALL;

function SELEC DISTINCT
WHAT SELECT LIST;
FROM FROMCLAUSE;
WHERE SEARCH-CONDITION - NULL SEARCHCONDITION;
GROUP BY GROUPBYCLAUSE =-NULLGROUPBYCLAUSE;

HAVING SEARCH-CONDITION -NULLSEARCH CONDITION

return QUERYSPECIFICATION renames SELECTDISTINCT;

function SELEC_DISTINCT
WHAT VALUEEXPRESSION;
FROM FROM-CLAUSE;

WHERE SEARCH CONDITION : NULLSEARCH CONDITION;
GROUPBY GROUPBYCLAUSE : NULLGROUPBYCLAUSE;
HAVING SEARCH-CONDITION " NULLSEARCHCONDITION

return QUERY_SPECIFICATION renames SELECTDISTINCT;

function SELECDISTINCT
(WHAT STARTYPE;

FROM FROM-CLAUSE;
WHERE SEARCHCONDITION NULLSEARCHCONDITION;
GROUP_.BY GROUP BY CLAUSE - NULLGROUPBYCLAUSE;
HAVING SEARCH CONDITION -NULLSEARCH CONDITION

return QUERY_SPECIFICATION reum sW SELECTDISTINCT;

function 'G" (LEFT VALUEEXPRESSION ; RIGHT : VALUEEXPRESSION
return SELECT LIST;

function "&" (LEFT SELECT LIST ; RIGHT VALUEEXPRESSION
return SELECTLIST;

function "and" (LEFT : VALUEEXPRESSION ; RIGHT : VALUEEXPRESSION
return SELECT-LIST reames "&";

Database Language Ada/SQL
178

UNASSIFIED

function "ndu (LEFT : SELECTLIST ; RIGHT VALUEEXPRESSION
return SELECTLIST renames IJ;

For a program data t ct:

funct ion SELEC
(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION -NULLSEARCH.CONDITION;

GROUP_BY GROUPBYCLAUSE NULLGROUPBYCLAUSE;
HAVING SEARCH-CONDITION NULLSEARCHCONDITION

return QUERYSPECIFICATION;

function SELECTALL
(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION : NULLSEARCHCONDITION;
GROUPBY GROUPBYCLAUSE - NULLGROUP BY CLAUSE;
HAVING SEARCHCONDITION U NULLSEARCHCONDITION

return QUERYSPECIFICATION;

function SELECTDISTINCT

(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION :-NULLSEARCHCONDITION;

GROUPBY GROUPBYCLAUSE m-NULLGROUPBYCLAUSE;

HAVING SEARCHCONDITION :-NULLSEARCHCONDITION
return QUERYSPECIFICATION;

function SELEC_ALL
(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION :-NULLSEARCHCONDITION;
GROUPBY GROUP_BY_CLAUSE -NULLGROUPBYCLAUSE;

HAVING SEARCHCONDITION :-NULLSEARCH CONDITION
return QUERYSPECIFICATION reames SELECTALL;

function SELECDISTINCT
(WHAT :ct;
FROM FROMCLAUSE;
WHERE SEARCHCONDITION :--NULLSEARCH CONDITION;
GROUPBY GROUPBYCLAUSE .- ULL_GROUP_BY_CLAUSE;
HAVING SEARCHCONDITION :-NULLSEARCH CONDITION

return QUERY.SPECIFICATION renms SELECTDISTINCT;

function 0" (LEFT VALUEEXPRESSION ; RIGHT : ct) return SELECTLIST;

function "S" (LEFT ct ; RIGHT VALUEEXPRESSION) return SELECTLIST'

function "i" (LEFT SELECTLIST ; RIGHT ct) return SELECTLIST;

function "and" (LEFT : VALUEEXPRESSION ; RIGHT : ct) return SELECTLIST

Caunmn elements
179

UNILiASSIFIED

rens 5~;

function "and" (LEFT ct ; RIGHT VALUEEXPRESSION) return SELECTLIST
renma Is*;

function "and, (LEFT SELECTLIST ; RIGHT : ct) return SELECTLIST
renma "n';

Example

CURSOR CURSORNAME;

DECLAR (CURSOR , CURSORFOR ->
SELEC (NAME & SALARY G MANAGER, -- variation: NAME and SALARY and MANAGER
FROM-) EMPLOYEE));

INSERTINTO (EMPLOYEE

SELEC ('',

FROM -) NEW_EMPLOYEEFILE));

-- assume NEWEMPLOYEEFILE is another database table structured identically
-- to the EMPLOYEE table

-- va'iations in the above: replace SELEC with SELECTALL, SELECTDISTINCT,
-- SELECALL, or SELECDISTINCT

Syntax Rules

1) Specifying SELECALL is equivalent to specifying SELECT.ALL; specifying SELEC_-
DISTINCT is equivalent to specifying SELECT-DISTINCT.

2) If a <select list> contains two or more <value expression>s, then at least one of the first two
<value expression>s in the <select list> shall contain a <column specification>, a <set function
specification>, an <indicator specification>, or the <key word> USER.

3) Two <select list>s, differing only in the use of "&" vs. "and" to separate <value expression>s, are
equivalent.

4) The applicable <privileges> for each <table name> contained in the <table expression> shall
include SELEC.

NOTE: The "applicable <privileges>" for a <table name> are defined in 6.6, <privilege
definition>".

5) Let R denote the result of the <table expression>.

6) The degree of the table specified by a <query specification> is equal to the cardinality of the
<select list>.

Database Language Ada/SQL
180

UNCLASSIFIED

7) The <select list> '*' is equivalent to a <value expression> sequence in which each <value expres-
sion> is a <column specification> that references a column of R and each column of R is refer-
enced exactly once. The columns are referenced in the ascending sequence of their ordinal position
within R.

8) Each <column specification> in each <value expression> shall unambiguously reference a column
of R. The ..DISTINCT suflix shall not be specified on more than one <key word> in a <query
specification>, excluding any <subquery> of that <query specification>.

9) If R is a grouped view, then the <select list> shall not contain a <set function speciilation>.

10) If R is a grouped table, then each <column specification> in each <value expression> shall refer-
ence a grouping column or be specified within a <set function specification>. If R is not a grouped
table and any <value expression> includes a <set function specification>, then every <column
specification> in every <value expression> shall be specified within a <set function specification>.

10) Each column of the table that is the result of a <query specification> has the same data type and
length (for character strings) as the <value expression> from which the column was derived.

11) If the i-th <value expression> in the <select list> consists of a single <column specification>, then
the i-th column of the result is a named column whose <column name> is that of the <column
specification>. Otherwise, the i-th column is an unnamed column.

12) A column of the table that is the result of a <query specification> is constrained to contain only
nonnull values if and only if it is a named column that is constrained to contain only nonnull values.

13) A <query specification> is updatable if and only if the following conditions hold:

a) Neither SELECT.DISTINCT nor SELEC.DISTINCT is specified.

b) Every <value expression> in the <select list> consists of a <column specification>, or a
<column specification> to which one or more CONVERTTO operators are applied.

c) The <from clause> of the <table expression> specifies exactly one <table reference>, and
that <table reference> refers to an updatable table.

d) The <where clause> of the <table expression> dk es not include a <subquery>.

e) The <table expression> does not include a <group by clause> or a <having clause>.

General Rules

1) If R is not a grouped table and the <select list> includes a <set function specification>, then R is
the argument or argument source of each <set function specification> in the <select list> and the
result of the <query specification> is a table consisting of one row. The i-th value of the row is the

Common elements
181

UNCLASSIFIED

value specified by the i-th <value expression>.

2) If R is not a grouped table and the <select list> does not include a <set function specification>,
then each <value expression> is applied to each row of R yielding a table of m rows, where in is the
cardinality of R. The i-th column of the table contains the values derived by the applications of the
i-th <value expression>. If neither SELECTJ)ISTINCT nor SELECJ)ISTINCT is specified,
then the table is the result of the <query specification>. If SELECT-DISTINCT or
SELECJ)ISTINCT is specified, then the result of the <query specification> is the table derived
from that table by the elimination of any redundant duplicate rows.

3) If R is a grouped table that has zero groups, then the result of the <query specification> is an empty
table.

4) If R is a grouped table that has one or more groups, then each <value expression> is applied to
each group of R yielding a table of in rows, where in is the number of groups in R. The i-th colum
of the table contains the values derived by the applications of the i-th <value expression>. When a
<value expression> is applied to a given group of R, that group is the argument or argument source
of each <set function specification> in the <value expression>. If neither SELECTISTINCT
nor SELECJ)ISTINCT is specified, then the table is the result of the <query specification>. If
SELECT-DISTINCT or SELEC..DISTINCT is specified, then the result of the <query
specification> is the table derived from that table by the elimination of any redundant duplicate
rows.

5) A row is a duplicate of another row if and only if all pairs of values with the same ordinal position
are identicaz.

Notes

1) There are four <query specification> functions effectively declared for each <key word> that may
be used to introduce the construct. The functions differ in the type of their first parameter, based on
the text of the <query specification> as follows:

SELECT-rLIST - used when the <select list> contains more than one <value expression>

VALUE-EXPRESSION - used when the <select list> contains only one <value expression>,
which contains at least one of a <column specification>, a <set function specification>, an <di-
cator specification>, or the <key word> USER

ct (program type) - used when the <select list> contains only one <value expression>, which does
not contain a <column specification>, a <set function speceflcation>, an <indicator
specification>, or the <key word> USER

STAR-iTYPE - used when the <select list> consists of the single element'*'

2) The overloaded "&" (equivalently, "and") operators have three different types of operands. The
effective type of each operand is based on the text of the corresponding <value expression> in the
<select list>, as follows:

SELECTLIST - always used fc the left operand of the second and succeeding Ws in a <select

Database Language Ada/SQL
182

UNCLASSU7IED

list>; preceding "&" operators, which are applied from left to right in accordance with Ada rules,
effectively return a result of type SELECTLIST to be used as the left operand of the next "&". The
remaining two types may be used for either operand of the first "&" in a <select list>, and for the
right operand of all succeeding "&"s

VALUE.EXPRESSION - used when the <value expression> contains at least one of a <column
specification>, a <set function specification>, an <indicator specification>, or the <key word>
USER

ct (program type) - used when the <value expression> does not contain a <column specification>,
a <set function specification>, an <indicator specification>, or the <key word> USER

3) The Ada/SQL <query specification> conforms to the ANSI SQL <query specification>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
- SRI 4

- SR2 5
- SR3 6

SR1-SR7 SR4-SR10 -

SR8 SR11 7
SR9 SR12 -

SR10 SR13 8
SR11 SR14 -

GR1-GR2 GR1-GR2 -
GR3 GR3 9

GR4-GR5 GR4-GR5 -

4) The <key word>s SELECT.ALL and SELECT-DISTINCT are those originally defined for
Ada/SQL, and are provided for upward compatibility. SELEC..ALL and SELEC.DISTINCT are
provided to use the same SELEC keyword as for <privileges> and because some users have
expressed a preference for them. Release 1 implementations do not recognize the new <key
word>s.

5) A <value expression> not containing a <column specification>, a <set function specification>,
an <indicator specification>, or the <kcy word> USER is, as far as the effective Ada declarations
are concerned, of a user-defined (or predefined) program type. If two such <value expression>s of
program data types tl and t2, were to be used as the first two <value expression>s within a <select
list>, then the following "&" (or, equivalently, "and") operator must be effectively declared:

function OV (LEFT : tl ; RIGHT : t2) return SELECT-LIST;

An implementation which generates all possible effective Ada/SQL declarations based on the type
declarations contained in a <schema>, would have to generate n**2 such functions, where n is the
number of different data types declared. By prohibiting the first two <value expression>s within a

Common elements
183

UNCLASSIFIED

<select list> from both being of program types, SR2 ensures that the number of functions
effectively declared is linear in the number of program data types defined, rather than depending on
the square of the number of data types. Note that the effective Ada/SQL declarations are such that
a <value expression> containing a <column specification>, a <set function specification>, an
<indicator specification>, or the <key word> USER, when used within a <select list>, effectively
returns an object of the single type VALUEEXPRESSION, regardless of its underlying conceptual
type, thereby avoiding the n**2 problem.

Release I implementations do not support the <key word> USER.

The restriction of Ada/SQL SR2 should actually have virtually no impact on Ada/SQL program-
mers, because the usefulness of a single <value expression> (let alone two!) not containing a
<column specification>, a <set function specification>, or the <key word> USER is extremeiy
limited in a <select list>. The value returned by such a <value expression> is not denerdent on
the database, and so could easily be computed outside of the Ada/SQL statement.

If a programmer insists on using such program expressions as the first two <value expression>s in a
<select list>, then one of the <value expression>s can be expressed as an <indicator
specification> to comply with Ada/SQL SR2. For example, the following violates SR7 (assume
that NEW.EMPLOYEE and HISMANAGER are program variables of character string type
EMPLOYEE.NAME):

SELEC (NEW_EMPLOYEE & HIS-MANAGER .

However, the following has the exact same effect, and is permitted:

SELEC (INDICATOR (NEW-EMPLOYEE) & HISMANAGER .

The above example also shows another potential problem avoided by SR2: The first two <value
expression>s in the illegal SELEC fragment are of the same character string program data type, for
which the "&" operator is already defined as catenation. (A similar problem exists for two boolean
values with an "and" operator.) If NEW..EMPLOYEE and HISMANAGER are to be treated as
separate columns of the result, rather than as a single catenated value, then the effective declaration
for the Ada/SOL "&" operator must redefine the predefined "&" operator for the
EMPLOYEE&NAME character string type. The ambiguity as to whether or not
NEW.EMPLOYEE and HIS..MANAGER are to be treated as separate columns or as a single
catenated value, as well as the undesirability of redefining the "&" operator for the former case,
make it fortunate that Ada/SQL SR2 simply prohibits such a construct.

6) The "&" operators are those originally defined for Ada/SQL. "and" may be used instead, and may

be useful in avoiding problems with operator precedence. If one were to (incorrectly) write:

SELEC (NAME & SALARY + COMMISSION . .,

then the "&" operator would be effectively applied before the "+" operator. This would be an error,
of course, because no appropriate "+" operator would be defined. If it is desired to use the "&"
operator for the above fragment, then parentheses may be used to correctly rewrite it as:

SELEC (NAME & (SALARY + COMMISSION)

The precedence of the "and" operator is such that it may be used without requiring

Database Language Ada/SQL
184

UNCILASSIFIE

parenthesization:

SELEC (NAME and SALARY + COaWISION .

Release 1 implementations do not recognize "and"s used to separate <value expression>s in a
<select list>.

7) ANSI SQL SR8, corresponding to Ada/SQL SR11, includes mention of precision and scale. A
concept equivalent to precision is included in the description of an Ada/SQL floating point data
type, and scale is not relevant to Ada/SQL data types. (It may become so at a later date, if support
for fixed point types is added.)

8) Release I implementations do not support null values. Hence, all columns may be considered to be
constrained to contain only nonnull values.

9) ANSI SQL GR3, which, like Ada/SQL GR3, applies when R is a grouped table that has zero
groups, describes circumstances under which the result of the <query specification> shall contain
one row. It does not, however, exhaustively cover all circumstances that are possible for a grouped
table with zero groups. Hence, there are conditions left unspecified by ANSI SQL GR3. Further-
more, the values to be contained in that single row, when applicable, are not well-defined in ANSI
SQL GR3. Finally, the whole idea of returning a single row for a <query specification> on a table
with zero groups is counter-intuitive. Hence, Ada/SQL GR3 specifies that an empty table is to be
returned in all cases for a <query specification> on a grouped table with zero groups. Although this
differs from ANSI SQL GR3, it corrects the latter's errors of incompleteness, imprecise definition,
and departure from expected action. The Ada/SQL interpretation is actually the same as is
currently being considered by the ANSI committee for the next version of SQL.

Common elements
185

UINCLASSIFIED

5.26 -Ctable name with optional column list>

Function

Specify a table and, optionally, a list of columns in the table.

Format

<table name with optional column list>:-
<table name>
[(<authorization identifier> - I <table identifier> (<column list>)

<columniHst> ::-
<column name> f{& <colaumn name> .]

Effective Ada Declarations

For a table t with authorization identifier a:

type TABLE3IDENTIFIERWITHCOLUMNLIST-.a Is private;

type TABLENAMEWITHCOLUMNLIST Is private;

type COLUMNLIST-t is private;

function W-0
(LEFT AUTHORIZATIONIDENTIFIER a;

RIGHT TABLEIDENTIFIERWITHCOLUMNLIST-a)
return TABLENAMEWITHCOLUMN-LIST;

function t (LIST :COLUMN LIST t)
return TABLEIDENTIFIERWITH COLUMNLIST-a;

function t (LIST :COLUMN NAME t)
return TABLEIDENTIFIERWITHCOLUMNLIST-a;

funct ion t (LIST COLUMN-LIST t) return TABLENAMEWITHCOLUMNLIST;

function t (LIST COLUMN NAME t) return TABLE NAME-WITH COLUMNLIST;

function O&H (LEFT , RIGHT :COLUMNNAME-t) return COLUMNLIST-t,

function "a*
(LEFT COLUMN LIST t

RIGHT COLUMN NAME t) return COLUMN-LIST-t;

Example

NEWDEPLOYEEV
HIS-MANAGER :EMPLOYEENAME;

Database Language Ada/SQL
186

LICASSIFIED

HIS-SALARY EMPLOYEESALARY;

INSERT INTO (EMPLOYEE (NAME & SALARY & MANAGER)
VALUES (- NEW EMPLOYEE and HISSALARY and HISMANAGER);

INSERTINTO (EXAMPLE-EMPLOYEE (NAME & SALARY a MANAGER)
VALUES (- NEWEMPLOYEE and HISSALARY and HIS MANAGER);

INSERTINTO (EMPLOYEE
VALUES (- NEWEMPLOYEE and HISSALARY and HIS-MANAGER);

INSERTINTO (EXAMPLE.EMPLOYEE
VALUES (- NEWEMPLOYEE and HISSALARY and HIS-MANAGER);

Syntax Rules

1) The <table name> represented in a <table name with optional column list> is determined as fol-
lows:

Case:

a) If a <table name> is specified, then that <table name> is the one represented in the <table
name with optional column list>.

b) Ifa <table name> is not specified, then:

Case:

i) If an <authorization identifier> is specified, then the <table name> formed as
<authorization identifier>. <table identifier>, using the contained <authorization
identifier> and <table identifier>, is the one represented in the <table name with
optional column fist>.

ii) If an <authorization identifier> is not specified, then the <table name> formed as the
contained <table identifier> is the one represented in the <table name with optional
column list>.

2) The same <column name> shall not be specified more than once in the <column list>.

General Rules

None.

Notes

1) <table name with optional column list> conforms to the following parts of ANSI SQL syntax:

<table name> [(<view column list>)] in <view definition> (6.5)

Common elements
187

UNCLASSIFIED

<table name> [(<insert column list>)] in <insert statement> (8.7)

It has been factored out for Ada/SQL because the effective Ada declarations for both uses are the
same.

2) Where both an <authorization identifier> and a <column list> are specified, the effective
Ada/SQL <table name> syntax is <authorization identifier>-<table identifier>, rather than
<authorization identifier>. <table identifier>. This is required in order to make effective Ada
declarations readily possible.

3) Release 1 implementations do not support <authorization identifier>s within <table name with
optional column list>s.

Database Language Ada/SQL
188

UNCLASsIFIED

6. Schema definition language

6.1 <schema>

Function

Define a <schema>.

Format

<schema> ::-
<authorization package>
<schema package> ...

<schema package> ::-
<schema package declaration>

(<schema package body>]

Effective Ads Declarations

None.

EIfnple

-- <authorization package>%

wi th SCHM4ADEFINITION;
use SCHDIA DEFINITION;

package EXAMPLEAUTHORIZATION Is

function EXAMPLE Is new AUTHORIZATIONIDENTIFIER;

end EXAMPLE AUTHORIZATION;

-- (schema package) containing only a (schema package declaration):

package EXAMPLETYPES is

package ADASQL Is

type EMPLOYEE-NAME is new STRING (1 .. 30);

type BOSS_NAME Is new EMPLOYEENAME;

type EMPLOYEE-SALARY is digits 7 range 0.00 .. 99_999.99;

type HOURLYWAGEFORCOMPUTATIONS i s new EMPLOYEESALARY;

Schenm definition language
189

U'KLASSIFIED

subtype HOURLYWAGE In HOURLYyAGEJORCOMPUTATIONS range 0.00 .. 48.08;

end ADASQL1

end EXAMPLE-TYPES;

-- schema package> containing a <schema package declaration> (below) and a
-- schema package body) (follows):

with SCHEMADEFINITION, EXANPLE AUTHORIZATION, EXAMPLETYPES,
use SCHEMADEFINITION, EXAMPLE-AUTHORIZATION;

package EXAMPLESDL Is

package ADA..SQL Is

use EXAMPLETYPES.ADASQL;

SCHEMAAUTHOR! ZATION : IDENTIFIER :- EXAMPLE;

subtype EMPLOYEENAMENOTNuLLJ3NIQUE is EMPLOYEENAME,

type EMPLOYEE is
record
NAKE :EMPLOYEENAMENOTNULL_UNIQUE;
SALARY :EMPLOYEESALARY;

MANAGER EMPLOYEE NAME;
end record;

type NEW3EMPLOYEZFILE is
record

NAME : ELOYEENAMCE_NOT_NULLI _UNIQUE;
SALARY :EMPLOYEESALARY;

MANAGER :EMPLOYEE-MAKE;
end record;

typo ONkEMIPLOYEETABLE Is
record

NAME EMPLOYEE_NAME_NOT_NULL _UNIQUE;
SALARY EMPLOYEE _SALARY;
MANAGER :EMPLOYEE _NAME;

end record;

type MANAGERS Is
record

NAME : EMPLOYEENAMX_NOTNULLUNIQUE;
end record;

end ADASQL;

end EXAMPLESDL;

Database Language Ada/SOL
190

?UASSIFIED

-- (schema package body>:

with EXAMPLESDL_ADA._SQL;
us* EXAHPLESDLADA SQL;

package body EXAMPLE_SDL is

begin

CREATEVIEW (MANAGERS (NAME)
AS -) SELECT-DISTINCT (MANAGER,

FROM -) EMPLOYEE,
WIHERE -> IS-tIOT NULL (MANAGER)))

end EXAMPLESDL;

Syntax Rules

1) The <authorization package>, <schema package declaration>s, and <schema package body>s
within a <schema> need not be part of the same compilation.

2) A <schema package> contained in a <schema> shall contain a <schema authorization clause>
naming the same <authorization identifier> as is contained in the <authorization package> con-
tained in the <schema>.

3) A <schema package body> shall contain the same <package identifier> as does the <schema

package declaration> contained in the same <schema package>.

General Rules

1) The name of a <schema package> is that of its contained <schema package declaration>.

Notes

1) An Ada/SOL <schema> performs the same functions as does an ANSI SOL <schema>. The
major differences between the two <schema>s are:

a) An ANSI SOL <schema> must be represented in one textual unit; an Ada/SQL <schema>
may be divided into separate compilation units in accordance with Ada modularity concepts.

b) It is necessary to separate an Ada/SQL <schema> into two parts, due to Ada syntax require-
ments, with some definitions going into the <schema package declaration> and some
definitions going into the <schema package body>.

I

C Schema definidon language
191

L. .,m~ mmmm mlmim m I

UNCLASSIFIED

6.1.1 -Cauthorization package>

Function

Declare an <authorization identifier>.

Format

<authorization package> ::-
with SCHEMA.DEFINITION;
use SCHEMA..DEFINNION;
package <package identifier> is
fmacon <authorization identifier> is new AUTHORIZATIONJDENTIFIER;

end [<package identifier> I;

Effective Ada Declarations

Within package SCHEMA.DEFINITION:

generic
function AUTHORIZATIONIDENTIFIER return IDENTIFIER;

see also section 5.5 for definition of type IDENTIFIER for representing
<authorization identif ier>s

Example

with SCHMA DEFINITION;
use SOH4A_DEFINITION;

package EXAMPLE-AUTHORIZATION Is

function EXAMPLE Is new AUTHORIZATIONIDENTIFIER;

end EXAMPLE-AUTHORIZATION; -- variation: end;

Syntax Rules

1) If an <authorization package> contains two <package identifier>s, then both <package
identifier>s shall be identical.

2) The <authorization identifier> shall be distinct from the <authorization identiflier> declared by any
other <authorization package> in the same environment. The concept of environment is
implementor-defined.

General Rules

1) The first <package identifier> is declared to be the name of the <authorization package>.

Database Language Ada/SQL
192

L. - |J m lm m u m "

UNCLASSIFIED

2) An <authorization package> declares its contained <authorization identifier>.

Notes

1) An Ada/SOL <authorization package> performs part of the function of an ANSI SQL <schema
authorization clause> (Ada/SQL also contains a <schema authorization clause> to perform the
rest of the function). Ada/SQL SR2 corresponds to ANSI SOL SRI in section 6.1.

2) Release 1 implementations require that each <authorization package> be contained in a separate
source file, and that the name of the file be the same as the name of the <authorization package>,
possibly augmented with an implementation-dependent indication that the file contains Ada source
code. This is done so that the text of an <authorization package> can be found when its name is
encountered in a <with clause>.

t

Sehem deflndon langae
193

IJNCJASSIFID

6.1.2 <schema package declaration>

Function

Declare data types, subtypes, tables, and columns.

Format

<schemia package declaration> :
[<context clause>]I
<schema package specification>;

<schema package specification> ::-
package <package identifier> Is

[<use clause> ...]
package ADA...SQL Is

[<use clause> ...J]
[<schema authorization clause>]
<schema specification element>..

end ADA-SQL;
end [<package identifier>]

<schema authorization clause>
SCEMA..AUrHORIZATION: IDENTIFEER :- <schema authorization identifier>

<schema authorization identifier>
<authorization identifier>

<schema specification element> :
<type declaration>
I<subtype declaration>
I<number declaration>
<table definition>

Effective Ada Declarations

See 5.5 for the effective declaration of type IDENT11FIER within package
SCEMA.JEFINMTON.

Example

- <schema package specification> not containing a <schema authorization - clause>

package WLAMPLE_-TYPES Isa

package ADA-SQL Is

b=MAXKZELEGTH :constant :- 30,

type EMPLOYEENAME Is new STRING (1 .. MAXNAME-LENGTH)

type BOSS-NAME Is new EPLOYENAME;

Database Language Ada/SQL
194

IUNASSIFIED

type EMPLOYEESALARY is digits 7 range 0.00 .. 99_999.99;

type HOURLYWAGEFORCOMPUTATIONS Is new EMPLOYEESALARY;

subtype HOURLYWAGE is HOURLYWAGEFORCOMPUTATIONS range 0.00 .. 48.08;

end ADASQL;

end EXAMPLETYPES;

-- (schema package specification> containing a (schema authorization clause>

witb SCHEMA-DEFINITION, EXAMPLEAUTHORIZATION, EXAMPLETYPES;
use SCHEMA-DEFINITION, EXAMPLEAUTHORIZATION;

package EXAMPLESDL is

-- variation: use EXAMPLETYPES.ADA SQL;

package ADA-SOL is

use EXAMPLE_TYPES.ADA_SOL;

SCHEMA_AUTHORIZATION : IDENTIFIER :- EXAMPLE;

subtype EMPLOYEENAMENOT_NULL_UNIQUE is EmPLOYEENAME;

type EMPLOYEE Is
record

NAME : EMPLOYEENAMENOTNULLUNIQUE;
SALARY : EMPLOYEESALARY;
MANAGER : DMPLOYEE NAME;

end record;

type NEW EMPLOYEE-FILE is
record

NAME • EMPLOYEENAMENOTNULLUNIQUE;
SALARY : EMPLOYEESALARY;
MANAGER EMPLOYEENAME;

end record;

type ONE EMPLOYEETABLE is
record

NAME : EMPLOYEENAMENOTNULLUNIQUE;
SALARY EMPLOYEESALARY;
MANAGER : EMPLOYEE NAME;

end record;

type MANAGERS Is
record

NAME : EMPLOYEENAMENOTNULLUNIQUE;
end record;

Schem definition language
195

IUNIASSIFIED

end ADA_SQL;

end EXAMPLESDL;

Syntax Rules

1) If a <schema package specification> contains two <package identifier>s, then both <package
identifler>s shall be identical.

2) Case:

a) If a <schema package declaration> contains a <schema authorization clause>, then:

i) It shall be contained within a <schema>.

ii) It shall contain SCHEMADEFEITION as a <package name> and also as a <library
package name> not contained in a <package name>.

iii) It shall contain, as a <package name> and also as a <library package name> not con-
tained in a <package name>, the name of the <authorization package> contained in
the same <schema>.

b) If a <schema package declaration> does not contain a <schema authorization clause>, then:

i) It is not contained within a <schema>, but may define data types and subtypes for use
in other SDL components.

ii) It shall not contain a <table definition>.

General Rules

1) The first <package identifier> is declared to be the name of the <schema package specification>
and of the <schema package declaration>.

Notes

1) The functions of an ANSI SOL <schema element> are encompassed by two Ada/SQL syntactic
elements: <schema specificatin element> and <schema body element>. In addition, <schema
specification element> also provides for declaring data types, subtypes, and <named number>s.

2) Release I implementations require that each <schema package declaration> be contained in a
separate source file, and that the name of the file be the same as the name of the <schema package
declaration>, possibly augmented with an implementation-dependent indication that the file con-
tains Ada source code. This is done so that the text of a <schema package declaration> can be
found when its name is encountered in a <with clause>.

Database Language Ada/SQL
196

UNCLASSEFEED

3) Release 1 implementations do not support <number declaration>s.

Schema definition language
197

UNCLASSIFIED

6.1.3 <schema package body>

Function

Define uniqueness constraints, viewed tables, and privileges.

Format

<schema package body> ::-
<context clause>
package body <package identifier> Isr<use c,> ... I
(<number declaration>...]

begin
<schema body element> ...

end [<package identifier>];

<schema body element>
<view definition>
<privilege definition>
<unique constraint definition>

Effective Ada Declarations

None.

Example

witb EXAMPLE SDLADA_SQL;
use EXAMPLESDLADA_SQL;

package body EXAMPLESDL Is

-- variations: use EXAMPLE SDLADA..SQL; -- (use clause)
ONE : constant :1 1; -- (number declaration>

begin

CREATE-VIEW (MANAGERS (NAME), -- <view definition>
AS -> SELECTDISTINCT (MANAGER,

FROM -) EMPLOYEE,
WHERE -> IS NOTNULL (MANAGER)));

GRANT (SELEC , ON -> MANAGERS , TO -> PUBLIC); -- (privilege definition>

CONSTRAINTS (NEW DMPLOYEE_FILE , UNIQUE (SALARY £ MANAGER));
-- <unique constraint definition)

end EXAMPLE.SDL; -- variation: end;

Syntax Rules

Database Language Ada/SOL
198

F UNCLASSIFIED

1) If a <schema package body> contains two <package identifier>s, then both <package identifier>s
shall be identical.

2) Let P be the <package identifier>. A <schema package body> shall coitain PADA..SQL as a
<package name> and also as a <library package name> not contained in a <package name>.
P.ADASOL is called the Ada/SQL defltimion package associated with the <schema package
body>.

General Rules

None.

Notes

1) In a runtime system, the PADASQL package referred to in SR2 defines all the database names
and operations used in the <schema body element>s of a <schema package body>. In a prepro-
cessed system, references to PADASQL can be deleted by the preprocessor.

2) A <context clause> is required in a <schema package body>, even though it is optional in a
<schema package declaration>. This is because P..,ADA..SQL (as defined in SR2) must be named
in the <context clause> of a <schema package body>.

3) Release I implementations do not support <schema package body>s - all information from a
<schema> must be replicated in the database structure in a way that is not defined by those imple-
mentations.

Schema deflnklwn wanwag
199

UNCLASSIFIE

6.1.4 <context clause>

Function

Identify <schemna package>s and predefined environment packages that are reference frMa
<Ada/SQL compilation unit>.

Format

<context clause>::
{<with clause> [<use clause> ... 1

<with clause>:
with <unit simple name> <unit simple name>}]

<unit simple name> ::-
<library package name>
<non Ada/SQL library unit name>

<use clause> ::-
use <package name> [,<package name>'} .

Effective Ada Declarations

None.

Example

-<context clause> with no <use clause>:

Wi th SCNHtA DEFINITION;

-(context clause) with duplications, several (with clause). and

-- (use clause~s:

with SC2HiNA DEFINITION;

Use SCEI DEFINITION;
with ELAMPLEAUTUORIZATION, EXAMPLETYPES;

With SCHEM4_DEFINITION;
use SCHEKADEFINITION, EXAMPLE-AUITORIZATION;

:SO EXAMPLETYPES;

-(use clause) not contained in a <context clause):

as@ EXAMPLE-TYPES.ADA.SQL;

Syntax Rules

1) Case:

Database Language Ada/SQL
200

UNCLASSIFIW

a) U a <context clause> is contained in a <schema package declaration>, then each <unit sim-
ple name> contained within it shall be a <library package name> which is the name of an
<authorization package>, a <schema package>, or a package from the predefied
Ada/SQL environment.

b) f a <context clause> is contained in a <schema package body>, then each <unit simple
name> contained within it shall be a <library package name> which is the name of an
<authorization package>, a <schema package>, the Ada/SQL definition package associated
with the <schema package body>, or a package from the predefined Ada/SQL environment.

c) Ia <context clause> is contained in a <global variable package>, then:

Case:

i) If the <global variable package> contains any <correlation name declaration>s, then
each <unit simple name> contained within the <context clause> shall be a <library
package name> which is the name of a <schema package>, the Ada/SQL definition
package associated, with the <global variable package>, or a package from the
predefined Ada/SQL environment.

ii) If the <global variable package> does not contain any <correlation name
declaration>s, then each <unit simple name> contained within the <context clause>
shall be a <library package name> which is the name of a <schema package> or a
package from the predefined Ada/SQL environment.

d) If a <context clause> is contained in an <Ada/SQL DML unit>, then each <unit simple
name> contained within it shall be a <lhbrary package name> which is the name of an
<authorization package>, a <schema package>, a <global variable package>, the
Ada/SQL definition package associated with the <Ada/SQL DML unit>, or a package from
the predefined Ada/SQL environment; or it shall be a <non Ada/SQL library unit name>
which is the name of an Ada hlbfary.unit such that at least one of the following conditions is
true:

i) The library-unit is not a package-declaration.

ii) If (i) is false, then the visible part of the package-declaration does not contain any
basic.declarativeitems that are not use-clauses.

iii) If (i)-(ii) are false, then all of the following conditions are true:

1) The tokens comprising the first basic.declarative-item are not: faction identifier
Is mew AUTHORIZATIONJDENTIWIMR;

2) The tokens comprising the the first basic-declarative.item this is not a use-clause
are not: package ADA..SQL Is

Schema defltton langmuae
201

UNCLASSIFIE

3) The first basic.declarative.item that is not a usekclause is not an
objecLdeclaraton

2) Ifa <use clause> is contained in a <context clause>, then each <package name> contained within
it shall be of the form <unit simple name>.

3) If a <use clause> is not contained in a <context clause>, then each <unit simple name> within it
shall be of the form <library package name>.

4) Each <unit simple name> contained in a <use clause> shall be the same as a <unit simple name>
contained in a textually prior <with clause> contained in the same <schema package>, <global
variable package>, or <Ada/SQL DML unit>, as appropriate.

5) Case:

a) If a <with clause> or a <use clause> is contained in a <context clause> of a <schema pack-
age declaration>, then it applies to both the <schema package declaration> and also to the
<schema package body>, if any, contained in the same <schema package>.

b) If a <with clause> or a <use clause> is contained in a <context clause> of a <schema pack-
age body>, <global variable package>, or an <Ada/SQL DML unit>, then it applies to that
<schema package body>, <global variable package>, or <Ada/SQL DML unit>.

c) If a <use clause> is contained in a <local variable package>, then it applies to the <local
variable package> in which it is contained.

d) If a <use clause> is not contained in a <context clause> or a <local variable package>, then
it applies to the <schema package declaration>, <schema package body>, <global variable
package>, or <Ada/SQL DML unit> in which it is contained.

6) A libary package is an <authorization package>; a <schema package>; a <global variable pack-
age>; the Ada/SQL definition package associated with a <schema package body>, a <global vari-
able package>, or an <Ada/SQL DML unit>; or a package from the predefined Ada/SQL
environment. The appearance of a <library package name> within a <with clause> defines that
<library package name> as denoting the library package with the same name. This definition is
valid from the point of definition to the end of the <schema package declaration>, <schema pack-
age body>, <global variable package>, or <Ada/SQL DML unit> to which the <with clause>
applies.

7) An innermost package is an <authorization package>; a <global variable package>; a <local vari-
able package>; the Ada/SQL definition package associated with a <schema package body>, a
<global variable package>, or an <Ada/SQL DML unit>; a package from the predefined
Ada/SQL environment; or the nested ADA..SQL package in a <schema package declaration>.
The appearance of a <package same> within a <use clause> defines that <package name> as
denoting an innermost package if:

Database Language Ada/SQL
202

UNCLASSIFIED

a) The <package name> is of the form <unit simple name>, and the <unit simple name> is the
name of an <authorization package>; a <global variable package>; the Ada/SQL definition
package associated with the containing <schema package body>, <global variable pack-
age>, or <Ada/SQL DML unit>; or a package from the predefined Ada/SQL environment
(the innermost package denoted is the one named), or

b) The <package name> is of the form <unit simple name>.ADA..SQL, and the <unit simple
name> is the name of a <schema package> (the innermost package denoted is the nested
ADA.SQL package of the <schema package declaration>), or

c) The <package name> is of the form ADA..SQL and one of the following is true:

i) The <package name> is contained in an <Ada/SQL DML unit> that also contains a
preceding <local variable package> (the innermost package denoted is that <local
variable package>), or

ii) The <package name> is contained in a <schema package body> (the innermost pack-
age denoted is the nested ADASQL package in the <schema package declaration>
contained in the same <schema package>).

This definition is valid from the point of definition to the end of the <schema package declara-
tion>, <schema package body>, <global variable package>, <local variable package>, or
<Ada/SQL DML unit> to which the <use clause> applies.

8) The effect of <with clause>s and <use clause>s for <schema package>s and <global variable
package>s are in accordance with Ada rules. Simplifications are made for <Ada/SQL DML
unit>s, however: (1) <with clause>s and <use clause>s do not apply to subunits, (2) <non
Ada/SQL package name>s contained within a <use clause> do not affect Ada/SQL syntax, and (3)
Ada use.clauses that are not Ada/SQL <use clause>s do not affect Ada/SQL syntax. The visibility
of <identifler>s contained within an <Ada/SQL DML unit> shall be the same under the simplified
Ada/SQL rules as under complete Ada rules.

General Rules

None.

Notes

1) <schema package>s and <global variable package>s, because their use is limited to Ada/SQL
constructs, may reference only other Ada/SQL packages. <Ada/SQL DML unit>s, however, may
reference arbitrary Ada library units. SRld is designed to enable Ada/SQL automated tools to
readily determine whether or not a unit referenced is an Ada/SQL package.

2) The syntax rules of <use clause>, as well as of <package name>, involve several simplifications
(over Ada syntax. A <unit simple name> in a <use clause> is not permitted to be the name of the

containing program unit. Also, ADA..SQL as a <package name> in a <use clause> is only permit-
ted where it refers to a <local variable package> contained in the same <Ada/SQL DML unit> or
to the nested ADA..SQL package contained in the same <schema package>. Since so many things

C Sehema definition lanuam
203

UNCLASSIFIED

are named ADA..SQL, this restriction is designed to minimize confusion about what is being refer-
enced, as well as to simplify the development of Ada/SQL automated took.

3) A non Ada/SQL library unit P could have a package named ADASQL declared within it. P is a
valid <unit simple name> (a <non Ada/SQL library unit name>), so in the absence of SR3
P.ADA..SQL in a <use clause> is syntactically ambiguous: it could be taken either as <unit simple
name>. ADA-SQL or as a <non Ada/SQL package name>. SR3 forbids a <unit simple name>
in this context from being a <non Ada/SQL library unit name>, so it restricts the syntactic
interpretation to the desired one: P.ADA..SQL is a <non Ada/SQL package name>.

4) The rules expressed in SR5 for how <with clause>s and <use clause>s contained within a <con-
text clause> apply to units are a simplification of Ada rules, in that subunits are not considered by
Ada/SQL. The other simplifications mentioned in SR8 are consequences of other syntax. For
example, <use clause>s can only appear at the beginning of compilation units. These
simplications are designed to enable Ada/SQL automated toos to be written without requiring
them to understand all of Ada library unit rules and block structure.

5) Release 1 implementations only process the first <with clause> and the first <use clause> (and
then only if it immediately follows the first <with clause>) of a <context clause> contained in an
<Ada/SQL DML unit>. It is assumed that units named in later <with clause>s do not apply to
Ada/SQL - these units would satisfy one of conditions (i) - (i) in SRld. Release I implementa-
tions therefore do not have to check the conditions. When processing <Ada/SQL DML unit>s,
Release 1 implementations also do not process <use clause>s not contained in <context clause>s.
Instead, they consider that if <library package name> P appears in the <use clause> processed,
and P contains a nested ADASQL package, then P.ADA_SQL also appears in a <use clause>
that applies to the <Ada/SQL DML unit>.

Database Language Ada/SQL
204

UNCLASSIFE

6.1.5 Ctype dedaration>

Function

Declare a data type.

Format

<type declaration> ::-
<full type declaration>

<full type declaration> ::-
type <type identifier> Is <type definition>;

<type identifier> ::-
<program identifier>

<type definition> ::-,
<data type>

I <derived type definition>

<derived type definition> ::-
new <subtype indication>

Effective Ada Declarations

In the DATABASE predefined package:

type IlNT I a range implementation.defined;

subtype SMALLINT I s INT range implementationdefined;

type DOUBLELRECISION Is digits lmplemenaon..efined
range implemuntadondefined;

subtype REAL Is DOUBLEPRECISION digits implementaton..deflned
range implemetation-defined;

-- The ranges and accuracies (for floating point) of these types/subtypes
-- are defined such that they represent the maximums that may be used with
-- the correspondingly-named SQL data types of the underlying database
-- implementation. If the ranges and accu.racies supported by the Ada
- system are at least as great as those supported by the database, then
- the Ada types/subtypes will match the database data types. If the Ada
-- system is more restrictive, then the definitions of these types/-
-- subtypes will (obviously) reflect those restrictions.

The following definitions from STANDARD may also be used with Ada/SQL:

BOOLEAN, INTEGER, FLOAT, CHARACTER, NATURAL, POSITIVE, STRING

Eumple

Schema definition language
205

UNCLASSmE

type MPLOYEESALARY Is digits 7 range 0.00 .. 99_999.99;

type HOURLYWAGEFORCONPUTATIONS Is new EMPLOYRESALARY;

s Rules

1) The <type identifier> shall not end in the characters ..N(-NULL or ..NOT.NULL NIQUE.

2) The <type identifier> shall not be identical to the name of any data type, subtype, table, or <named
number> declared by any other <schema specification element> in the containing <schema pack-
age specification>.

General Rules

1) A <type declaration> declares a data type. The <type identifier> is declared to be the name of the
data type.

Case:

a) A <type declaration> containing an <unconstrained character string definition> declares a
character string type with component subtype and index subtype given by the <character
string type> containing the <unconstrained character sting definition>. The <type
identifier> denotes the character string type.

b) A <type declaration> containing a <constrained character string definition> declares both a
character string type and a subtype. The character string type is an implicitly declared
anonymous type; this type is defined by an (implicit) <unconstrained character string
definition>, in which the <component subtype indication> is that of the <constrained char-
acter string definition>, and in which the (anonymous) <type mark> of the <index subtype
definition> denotes the subtype defined by the <index constraint>. The character string sub-
type declared by the <type declaration> is the subtype obtained by imposition of the <index
constraint> (as in a <subtype indication>) on the implicitly declared character string type.
The <type identifier> denotes the character string subtype.

c) A <type declaration> containing an <integer type> declares both an integer type and a sub-
type. The integer type is an implicitly declared anonymous type, with representation selected
by the implementation to include at least the values specified by the <range constraint>. The
integer subtype declared by the <type declaration> is the subtype obtained by imposition of
the <range constraint> (as in a <subtype indication>) on the implicitly declared integer type.
The <type identifier> denotes the integer subtype.

d) A <type declaration> containing a <floating point type> declares both a floating point type
and a subtype. The floating point type is an implicitly declared anonymous type, with
representation selected by the implementation to provide at least the accuracy specified by the
<floating point constraint>, and at least the range of numbers that would be required if the
<floating point constraint> did not contain a <range constraint> (see 5.5.3). The floating
point subtype declared by the <type declaration> is the subtype obtained by imposition of the
<floating point constraint> (as in a <subtype indication>) on the implicitly declared floating

Database Language Ada/SQL
206

UNCLASSIFIED

point type. The <type identifier> denotes the floating point subtype.

e) A <type declaration> containing an <enumeration type> declares an enumeration type, with
values given by the <enumeration literal specification>s contained within the <enumeration
type>. The <type identifier> denotes the enumeration type.

f) A <type declaration> containing a <derived type definition> declares both a type and a sub-
type. The type declared is an implicitly declared anonymous type, belonging to the same class
of types (character string, integer, floating point, or enumeration) as does the data type
denoted by the <type mark> of the <subtype indication>, with the same set of possible
values as that data type. The subtype declared is the result of imposing any <constraint>s
denoted by the <type mark> and/or included in the <subtype indication> on the implicitly
declared type. The <type identifier> denotes the subtype.

Notes

None.

II

I

g Schema eeflnltton language
207

UNCLASSIFIE

6.1.6 Cmsbtype declaraion>

Function

Declare a subtype.

Format

<subtype declaration> ::-
subtype <type identifier> is <subtype indication>;

Effective Ada Declarations

See subtypes SMALLINT and REAL declared in 6.1.5

Example

subtype HOURLY_WAGE Is HOURLYWAGEFOR.COMPUTATIONS range 0.00 .. 48.08,

subtype EwPLOYEE.NAMENOTNULLUNIQUE Is EnPLOYEENiJE;

Syntax Rules

1) The <type identifier> shall not be identical to the name of any data type, subtype, table, or
<named number> declared by any other <schema specification element> in the containing
<schema package specification>.

2) Let I denote the <type identifier> following the reserved word subtype, and let M denote the
<type identifier> of the <type mark> contained within the <subtype indication>.

Cse:

a) H the last characters of I are neither _NOTNULL nor ..NOT.ULLUNIQUE, then the
last characters of M shall be neither .NOTNULL nor _NOT_.NULLUN'IQUE.

b) If I is of the form V.NOTNULL, then:

i) M shall be identical to V.

ii) The <subtype indication> shall not contain a <constraint>.

c) U I is of the form VNOT.NULL.UNIQUE, then:

I) M shall either be identical to V or shall be V..NOTNULL.

ii) The <subtype indication> shall not contain a <constraint>.

Database Language Ada/SQL
208

UNCLASSlFIED

General Rules
1) A <subtype declaration> declares the subtype defined by its contained <subtype indication>.

The <type identifier> is declared to be the name of the subtype.

Notes

1) The .. OT.!ULL and _NOTYULL_.UNIQUE sufies are used to declare database columns
with the similarly-named constraints. SR2 establishes a hierarchy for subtype names that is con-
sistent with the semantics of the corresponding constraints: ...NOTNULL is a stronger constraint
than is no constraint, and _NOTNULL-UNIQUE is a stronger constraint than is .. NOT.NULL.

Schema definition language
209

UNCLASSIFIED

6.1.7 <number declaration>

Function

Declare a <named number>.

Format

<number declaration> ::-
<named number list> : constant :- <value specification>;

<named number list> ::-
<named number> [{, <named number> }...]

<named number> ::-
<program identifier>

Effective Ada Declarations

See 5.5.1, 5.5.2, and 5.5.3 for <named number>s that are declared to reflect
system limits.

Example

PI constant :- 3.14159_26536; -- a floating point number
TWO PI constant :- 2.0 * PI; a floating point number
MAX constant : 500; -- an integer number
ONE, UN, LINS constant : 1; -- three different names for 1

Syntax Rules

1) Each <named number> shall be distinct from the name of any other data type, subtype, table, or
<named number> declared in the containing <schema package specification>.

2) The <value specification> shall not contain a <value specification primary> other than a
<literal> or a <variable specification> containing a <named number> but not containing an
<indicator specification>.

3) If a <named number> is declared by a <number declaration> containing a <floating point
literal> or a floating point <named number>, then it is a floating point <named number>; other-
wise, it is an integer <named number>.

4) Arithmetic on integer <named number>s (and <integer literal>s) is performed without regard to
the constraints of any particular data type, as if they were of a universal integer data type. When
interpretation as a value of a specific integer data type is required by the context, an integer
<named number> or an otherwise untyped expression of integer <named number>s and/or
<integer literal>s is taken to be of that data type.

Database Language Ada/SQL
210

UNCLASSIFIED

5) Arithmetic on floating point <named number>s (and <floating point literal>s) is performed
without regard to the constraints of any particular data type, as if they were of a universal floating
point data type. When interpretation as a value of a specific floating point data type is required by
the context, a floating point <named number> or an otherwise untyped expression of floating
point <named number>s and/or <floating point literal>s is taken to be of that data type.
(Universal floating point expressions may also contain integer <named number>s and <integer
fiteral>s in certain contexts; see 5.6, "<value specification>", and 5.9, "<value expression>".)

General Rules

1) A <number declaration> declares its contained <named number>s. The value of the <named
number>s is that of the <value specification>.

2) The value of an integer <named number> or an untyped expression of integer <named number>s
and/or <integer literal>s, when taken to be of a specific integer data type, shall be exact. The
value shall belong to the data type; otherwise, the CONSTRAINT.ERROR exception is raised.

3) The value of a floating point <named number> or an untyped expression containing floating point
<named number>s and/or <floating point literal>s, when taken to be of a specific floating point
data type, shall be within the accuracy of that data type. The value shall belong to the data type;
otherwise, the CONSTRANT-ERROR exception is raised.

Notes

1) Release 1 implementations do not support <number declaration>s.

2) Ada/SQL SR2 ensures that the <value specification> defining the value of a <named number> is
an Ada static expression.

3) Ada/SQL SRs 3-5 express aspects of Ada/SQL's strong typing, consistent with Ada's implicit type
conversions from types universaLinteger and universaLreal.

4) Raising CONSTRAINT.ERROR in GR2 and GR3 corresponds to the Ada semantics on implicit
type conversions.

Schema definition language
211

UNCLASSIFIED

6.2 Ctable denton>

Function

Define a base table or a viewed table.

Format

<table definition> ::-
type <table name> is
record
<table element> ...

end record;

<table element> ::-
<column definition>;

Effective Ada Declarations

None.

Example

type DPLOYEE Is
record

NAME :MPLOYKE_NAME_NOTNULLUNIQUE;
SALARY :MPLOYEESALARY;
MANAGER :EPLOYE_NAME;

end record;

Syntax Rules

1) The <table name> shall not contain an <authorization identifier>.

2) The <table name> shall be different from the <table name> of any other <table definition> in
the containing <schema>.

3) The <table name> shall not be identical to the name of any data type, subtype, table, or <named
number> declared by any other <schema specification element> in the containing <schema
package specification>.

4) The description of the table defined by a <table definition> includes the name <table name> and
the column description specified by each <column definition>. The i-th column description is
given by the i-th <column definition>.

General Rules

Database Language Ada/SQL
212

UNCLASSIJFID

1) A <table definition> defines either a base table or a viewed table. If the containing <schema
package> contains a <schema package body>, and then that <schema package body> contains a
<view definition> containing a <table identifier> in the <table name with optional column list>,
that is the same <table identifier> as that contained in the <table name> of the <table
definition>, then the <table definition> defines a viewed table. Otherwise, the <table
definition> defines a base table.

Notes

) The Ada/SQL <table definition> conforms to the ANSI SQL <table definition>. The
correspondence between Ada/SQL rules and ANSI SOL rules Is as follows:

ANSI SQL Ada/SQL See Notes
SRI SRI 2
SR2 SR2. 3

SR3 4
SR3 SR4 5
GRI GRI 6

2) ANSI SQL permits an <authorization identifier> in the <table name>, but it is restricted to be
the same as <schema authorization identifier> of the containing <schema>. Ada syntax pro-
vides no way to conveniently include an <authorization identifier> in the <table name> con-
tained in a <table definition>, and no capability is lost by not allowing it, since it is restricted to
only one value anyway.

3) ANSI SQL SR2 also requires that the <table name> be different from that of any <view
definition> in the containing <schema>. As discussed in Note 6, below, Ada/SQL requires that
<table definition>s also be given for views, not just for base tables. Consequently, Ada/SQL SR2
is sufficient to prevent duplication of table and view names.

4) Ada/SQL <schema>s define other entities besides tables and views, and Ada syntax requires that
all names be unique within the same <schema package specification>.

5) The ANSI SQL format for <table element> includes <unique constraint definition>. Ada syn-
tax does not permit <unique constraint definition>s to be conveniently included within a <table
definition>, so <unique constraint deflnition>s are instead placed within <schema package
body>s.

6) In ANSI SQL, a <table definition> defines a base table, while a <view definition> defines a
viewed table. In Ada/SQL, base tables and viewed tables each require a <table definition>. The
presence or absence of a corresponding <view definition> determines whether a table is a viewed
table or a base table.

The reasons for requiring a <table definition> for views are analogous to the reasons that Ada

Schema defintlon language
213

separates entities into specifications and bodies. The <table definition> for a view defines the
names and data types of its columns, and so can be considered as the specification of the view A
<view definition> provides the detailed instructions on how to materialize the data in the view,
and so can be considered as the body of the view. This dichotomy is carried further by the
Ada/SQL syntax: <table definition>s we placed in <schema package specification>s, while
<view definition>s are placed in <schema package body>s. f the way in which data is material-
ized for a view changes, without affecting the specification of the view, then only the <view
definition> in a <schema package body> is changed; the <table definition> in a <schema pack-
age specification> is unaffected. The semantics of Ada recompilMon rules for the <schema
package> are then also the desired semantics for programs using the view: programs using the
view do not have to be changed (or even recompiled), since only the body has changed, without
changing the specification.

Database Language Ada/SQL
214

UNCLDM

6.3 o(counm deinition>

Function

Define a column of a table.

Format

<column definition> ::-
<column name> : <subtype indication>

Effective Ads Declarations

None.

Example

NAME •4PLOYEZNAME_NOTNULL_UNIQUE;
SALARY :IPLOYEESALARY;

Syntax Rules

1) The <column name> shall be different from the <column name> of any other <column
definition> in the containing <table definition>.

2) The i-th column of the table is described by the i-th <column definition> in the <table
definition>. The name and subtype of the column are specified by the <column name> and
<subtype indication>, respectively.

3) If the <type mark> of the <subtype indication> ends with the characters NOT-NULL or
..NOT.NULLUNIQUE, then the containing <table definition> shall define a base table and the
column is constrained to contain only nonnull values.

4) Let C denote the <column name> of a <column definition> contained in a <table definition> of
table T. If the <type mark> of the <subtype indication> ends with the characters
_NOTNULLUNIQUE, then the containing <table definition> shall define a base table and the
following <unique constraint definition> is implicit:

CONSTRAINTS (T , UNIQUE (C));

5) The description of the column defined by a <column definition> includes the name <column
name> and the subtype specified by the <subtype indication>.

6) If the <type mark> of the <subtype indication> denotes an unconstrained character string sub-
type, then the <subtype indication> shall also contain an <index constraint> to define the index
bounds of the column.

Schema definition hguage
215

UNCLASSEFIED

Gonrl Rules

1) If a column is constrained to contain only nonnull values, then the constraint is effectively checked
after the execution of each <SQL statement>. Any <SQL statement> that would cause the con-
straint to be violated has no effect on the database, and instead causes the
CONSTRAINTVIOLATION exception to be raised.

Notes

1) The Ada/SQL <column definition> conforms to the ANSI SOL <column definition>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
SRI SRI 2
SR2 SR2 3

SR3-SR4 -j3-SR4 4
SR SR5 3

- SR6 5
GRI GR1 -

2) The original specification of Ada/SQL allowed a list of <column name>s in a <column
definition>, as in an Ada component-declaration. Only allowing a single <column name> per
<column definition>, as is done here, is closer to SQL syntax, however.

3) An ANSI SQL column description includes the data type of the column, taken from a very limited
set of predefined data types; Ada/SQL extends this to include the subtype of the column, with
user-defined data types permitted.

4) Ada/SQL <table definition>s apply to viewed tables as well as to base tables. ANSI SQL pro-
vides no way to specify not null or uniqueness constraints for columns of a view, so we disallow
such specifications in the <column definition>s for a viewed table.

5) Ada/SQL SR6 is a consequence of Ada rules that the subtype of a record component must be con-
strained.

Database Language Ada/SQL
216

UNCLASSIFIED

6.4 <unique constraint definion)

Function

Specify a uniqueness constraint for a table.

Format

<unique constraint definition> ::-
CONSTRAINTS (<table name> , UNIQUE (<unique column list>));

<unique column list> ::-
<column name> [(& <column name> }]

Effective Ada Declarations

For a table t:

type UNIQUE_COLUMNLIST-t Is private;

function UNIQUE (COLUMNS COLUMNLISTt) return UNIQUECOLUMNLIST_t;

functlon UNIQUE (COLUMN COLUMNNAME-t) return UNIQUECOLUMNLIST_t;

procedure CONSTRAINTS
(TABLE TABLENAMEt;

COLUMNS UNIQUECOLUMN_LIST_t);

see also section 5.26 for definition of pe COLUMNJST-t and the
"&" operators

Example

CONSTRAINTS (EMPLOYEE , UNIQUE (NAME));

CONSTRAINTS EPLOYEE ,UNIQUE (NAME &MANAGER))

Syntax Rules

1) If the <table name> contains an <authorization identifier>, then that <authorization identifier>
shall be the same as the <schema authorization identifier> of the containing <schema>.

2) The <table identifier> contained in the <table name> shall be the same as the <table identifier>
contained in a <table definition> defining a base table within the same <schema package>.

3) Let T denote the table specified by the <table name>.

Schema definition language
217

UNCLASSIFIED

4) Each <column name> in the <unique column list> shall identify a column of T, and the same
column shall not be identified more than once.

5) The <column definition> for each <column name> in the <unique column list> shall indicate

that null values are not permitted in the column.

General Rules

1) Let "designated columns" denote the columns identified by the <column name>s of the <unique
column list>.

2) T is constrained to contain no rows that are duplicates with respect to the designated columns.
Two rows are duplicates if the value of each designated column in the first row is equal to the value
of the corresponding column in the second row. The constraint is effectively checked after the exe-
cution of each <SQL statement>. Any <SOL statement> that would cause the constraint to be
violated has no effect on the database, and instead causes the CONSTRAINT-VIOLATION
exception to be raised.

Notes

1) The Ada/SQL <unique constraint definition> conforms to the ANSI SOL <unique constraint
definition>. The correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
-- R --SR2 2

SR1-SR3 SR3-SR5 -

GR1-GR2 GR1-GR2

2) In ANSI SQL, a <unique constraint definition> is contained within the applicable <table
definition>. Ada syntax prevents this from being the case in Ada/SQL, where a <unique con:
straint definition> is contained in the <schema package body> corresponding to the <schema
package declaration> containing the applicable <table definition>. Ada/SQL SR1 and SR2
ensure that a <unique constraint definition> is indeed placed in the same <schema package> as
its applicable <table definition>. Also, uniqueness constraints may only be specified for a base
table, not for a viewed table, as with ANSI SOL.

Database Language Ada/SQL
218

I

UNCLASSEFIED

6.5 <view definition>

Functon

Define a viewed table.

Format

<view definition>
CREATEVIEW (<table name with optional column list>,
AS -> <query specification> [,
WITLCHECKOPTION -> ENABLED]);

Effective Ada Declarations

type OPTIONSTATE Is (ENABLED , DISABLED);

procedure CREATEVIEW

TABLE TABLE NAME -WITH -COLUNLI ST,
AS QUERYSPECIFICATION;
WITHCHECKOPTION OPTIONSTATE :-DISABLED);

Example

type NAMESONLY i
record
NAME EMPLOYEE NAME;
MANAGER EMPLOYEENAME;

end record;

CREATE_.VIEW (NAMES ONLY,
AS -) SELEC (NAME & MANAGER,

FROM -> EMPLOYEE));

type SUPERVISORS Is
record

EMP EMPLOYEENAME;
SUPERVISOR EMPLOYEENAME;

end record;

CREATE_VIEW (SUPERVISORS (EMP I SUPERVISOR),
AS -) SELEC (NAME & MANAGER,

FROM -) EMPLOYEE,
WHERE NE (NAME , MANAGER)),

WITH CHECKOPTION -) ENABLED);

S ntax Rules

1) If the <table name with optional column list> contains an <authorization identifier>, then that
<authorization identifier> shall be the same as the <schema authorization identifier> of the

Schema defndilon Inguage
219

UNCLASSIFI D

€ontainig <schema>.

2) The <table identifier> contained in the <table name with optional column list> shall be different
from the <table identifier> contained in any other <view definition>'s <table name with optional
column list> in the containing <schema>.

3) The <table identifier> contained in the <table name with optional column list> shall be the same
as the <table identifier> contained in a <table definition> defining a table within the same
<schema package>. Let that <table definition> be called the asociated <table definition>.

4) If the <query specification> is updatable, then the viewed table is an updatable table. Otherwise,
it is a read-only table.

5) If any two columns in the table specified by the <query specification> have the same <column
name>, or if any column of that table is an unnamed column, then a <column list> shall be
specified within the <table name with optional column lst>.

6) The number of <column name>s in the <table name with optional column list> shall be the same
as the degree of the table specified by the <query specification>.

7) The description of the table defined by a <view definition> is the same as that defined by the asso-
ciated <table definition>. The data type of the i-th column in the table specified by the <query
specification> shall be the same as the data type of the i-th column defined by the associated
<table definition>.

Case:

a) If a <column list> is contained in the <table name with optional column list>, then the i-th
<column name> in that <column list> shall be the same as the i-th <column name> in the
associated <table definition>.

b) If a <column list> is not contained in the <table name with optional column list>, then the
<column name> of the i-th column of the <query specification> shall be the same as the i-
th <column name> in the associated <table definition>.

8) If the <query specification> contains a <group by clause> or a <having clause> that is not con-
tained in a <subquery>, then the viewed table defined by the <view definition> is a grouped view.

9) If WITILCHECKOPTION -> ENABLED is specified, then the viewed table shall be updat-

able.

General Rules

1) A <view definition> defines a viewed table. The viewed table, V, is the table that would result if
the <query specification> were executed. Whether a viewed table is materialized is implementor-
defined.

Database Language Ada/SOL
220

UNCLASSIFIED

2) If V iatable,then letTdenoe thetable identifidby the<table name>specified inthe
<froma clause> in the <query specification>. For each row in V, there is a corresponding row in
T from which the row of V is derived. For each column in V, there is a corresponding column in T
from whch the column ofV is derived. Thie insertion of arow into Vis an insertion of a
corresponding row into T. The deletion of a row from V is a deletion of the corresponding row in
T. Thmeupdating of acolumn of arowin Vis an updating of the corresponding row in T.

3) Case:

a) If WMTLCHECK-OFION -> ENABLED is specified and the <query expression>
specifies a <where clause>, then an <insert statement>, an <update statement: posi-
tioned>, or an <update statement: searched> to the view shall not result in the creation of
a row for which that <where clause> is false. Any such statement that would cause the
<where clause> to be false has no effect on the database, and instead causes the
CONSTRAINT.YVIOLATION exception to be raised.

b) If WITLCHECL.OPTON -> ENABLED is not specified, then the <view definition>
shall not constrain the data values that may be inserted into an updatable viewed table.

NOTE: See General Rule 2 of 8.7, "<insert statement>", General Rule 9 of 8.11 "<update state-
ment: positioned>", and General Rule 4 of 8.12, "<update statement: searched>".

Notes

1) The Ada/SQL <view definition> conforms to the ANSI SQL <view definition>. The correspon-
dence between Ada/SQL rules and ANSI SOL rules is as follows:

ANSI SQL Ada/SQL See Notes
SRI SRI 2
SR_2 SR2-SR3 3

SR3-SR4 SR4-SR5 -

SR5 4
SR6 SR6 _____

SR7 S5
SR8-SR9 SR8-SR9 -

G1-i GRi-
GR2 GR2 6
GR3 GR3 ___

2) Ada/SQL <view definition> syntax contains a <table name with optional column list>, which
contains (in effect) the <table name> and <view column list> of the ANSI SQL syntax. This is
done to factor out definitions in common with the <insert statement>.

IL Schema definition language
221

UNCLASSIFID

3) ANSI SQL views are defined only by their <view definition>; an Ada/SQL view also has an asso-
ciated <table definition>. Ada/SQL SR2 ensures that each view has only a single <view
defnition>; Ada/SQL SR3 establishes the association between a <view definition> and a <table
definition>.

4) ANSI SQL SR5 is not required in Ada/SQL; it is covered in 5.26, "<table name with optional
column list>".

5) In ANSI SQL, the description of a view comes from its <view definition>. In Ada/SQL, the
description is provided by the associated <table definition>. Ada/SQL SRI ensures that the
description that ANSI SQL would infer from a <view definition> is consistent with the descrip-
tion given by the associated <table definition>.

6) The first sentence of ANSI SQL GR2 includes the phrase "in the first <from clause>", while
Ada/SQL GR2 omits "first'. It is a consequence of other syntax rules that an updatable <query
specification> contains exactly one <from clause>.

Database Language Ada/SOL
222

UNCLASSIFIEM

6.6 qCprlvlege definition>

Function

Define privileges.

Format

<privilege definition> ::-
GRANT (<privileges>,
ON-> <table name>,
TO -> <grantee> [(& <grantee> }
WITILGRANTOPTION -> ENABLED]);

<privileges> ::-
ALLPRIVILEGES
<action> <action> } ...]

<action> ::-
SELEC I INSERT I DELETE

I UPDATE [(<grant column Hst>)

<grant column list> ::-
<column name> [<column name> }

<grantee> ::-

PUBLIC I <authorization identifier>

Effective Ada Declarations

type AUTHORIZATIONIDENTIFIERLIST Is private;

funt ion PUBLIC return AUTHORIZATION IDENTIFIERLIST;

function "G (LEFT , RIGHT : AUTHORIZATIONIDENTIFIER LIST
return AUTHORIZATIONIDENTIFIER LIST;

type ALLPRIVILEGES TYPE In (ALLPRIVILEGES);

procedure GRANT
(PRIVILEGES ALLPRIVILEGESTYPE;

ON TABLENAME;
TO AUTHORIZATIONIDENTIFIERLIST;
WITHGRANT OPTION OPTION-STATE :- DISABLED);

see also section 6.5 for definition of type OPTIONSTATE

For a table t:

type PRIVILEGES_t Is private;

Schenm deflnit ion language
223

U1a"SSIFUID

function SELEC return PRIVILEGES t;

function INSERT return PRIVILEGESt;

function DELETE return PRIVILEGES t;

function UPDATE return PRIVILEGES t;

function UPDATE (COLUMNS : COLUMNLIST-t) return PRIVILEGES.t;

see also section 5.26 for definition of type COLUMN-LISTt and the
w&" operators on (column name)s

function UPDATE (COLUMN : COLUMNNAMEt) return PRIVILEGESt;

function "& (LEFT , RIGHT : PRIVILEGES-t) return PRIVILEGES t;

procedure GRANT
PRIVILEGES PRIVILEGESt;
ON TABLENAME_t;
TO AUTHORIZATIONIDENTIFIERLIST;
WITHGRANT OPTION OPTIONSTATE : DISABLED);

Exmple

GRANT (ALL-PRIVILEGES,
ON -> EMPLOYEE,
TO -) MANAGEMENT,
WITHGRANTOPTION -> ENABLED);

GRANT (SELEC,
ON) EMPLOYEE,
TO > PUBLIC);

GRANT (SELEC & UPDATE,
ON) EMPLOYEE,
TO ") PAYROLL);

GRANT (SELEC & UPDATE (NAME),
ON > EMPLOYEE,
TO "> SECURITY);

GRANT (SELEC & INSERT & DELETE & UPDATE (NAME & MANAGER),
ON > EMPLOYEE,
TO -> PERSONNEL);

Synta Rles

1) Let T denote the table identified by the <table name>. The <privileges> sp cify one or more
privileges on T.

Database Language Ada/SOL
224

UNCLASSIFIED

2) UPDATE (<grant column list>) specifies the UPDATE privilege on each column of T identified
in the <grant column list>. Each <column name> in the <grant column list> shall identify a
column of T. If the <grant column list> is omitted, then UPDATE specifies the UPDATE
privilege on all columns of T.

3) The applicable <privileges> for a reference to a <table name> are determined as follows:

a) Case:

i) If the occurrence of the <table name> (including as a <table name> represented in a
<table name with optional column list>) is contained in a <schema>, then let the
applicable <authorization identifier> be the <authorization identifier> specified as
the <schema authorization identifier> of the <schema>.

ii) If the occurrence of the <table name> (including as a <table name> represented in a
<table name with optional column list>) is contained in an <Ada/SQL DML unit>,
then let the applicable <authorization identifier> be the <authorization identifier>
implicitly associated with the execution of the program containing the <Ada/SQL
DML unit>.

b) Case:

i) If the applicable <authorization identifier> is the same as the <authorization
identifier> explicitly or implicitly specified in the <table name>, then:

Case:

1) If T is a base table, then the applicable <privileges> are INSERT, SELEC,
UPDATE, and DELETE, and those <privileges> are grantable.

2) If T is a viewed table that is not updatable, then the applicable <privileges> are
SELEC, and that privilege is grantable if and only if the applicable SELEC
privileges on all <table name>s contsined in the <query specification> are
grantable.

3) If T is a viewed table that is updatable, then the applicable <privileges> on T
are the applicable <privileges> on the <table name> T2 specified in the <from
clause> of the <query specification>. A privilege is grantable on T if and only
if it is grantable on T2.

ii) If the applicable <authorization identifier> is not the same as the <authorization
identifier> explicitly or implicitly specified in the <table name>, then the applicable
<privilege deflnition>s consist of all <privilege definition>s whose <table name> is
the same as the given <table name> and whose <grantee>s either contain the appli-
cable <authorization identifier> or contain PUBLIC, and the applicable
<privileges> consist of all <privileges> specified in applicable <privilege
definition>s. A privilege is grantable if and only if it is specified in the <privileges>

Schema definition language
225

UNCASSHFED

of some applicable <privilege definition> that specifies WITHGRANTOPTION
-> ENABLED and that specifies the applicable <authorization identifier>.

4) ALLPRIVILEGES is equivalent to a list of <action>s that include all applicable
<privileges> on the <table name>.

5) The applicable <privileges> for the <table name> of a <privilege definition> shall include

the <privileges> specified in the <privilege definition>.

General Rules

None.

Notes

1) The Ada/SQL <privilege definition> conforms to the ANSI SOL <privilege definition>.
The correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SOL Ada/SQL See Notes
SR1-SR2 SRI-SR2 -

SR3 SR3 2
SR4 SR4 3
SR5 SR5

2) Ada/SQL does not have a construct equivalent to the ANSI SOL <module>. Each ANSI
SOL <module> has an explicitly declared <authorization identifier> that is referenced in
ANSI SOL SR3a.ii. Each execution of an Ada/SQL program has an implicitly declared
<authorization identifier>, which is referenced in Ada/SQL SR3a.ii, and it is this <author-
ization identifier> that is analogous to that of an ANSI SOL <module>.

3) ANSI SOL SR4 references "ALL" rather than "ALL PRIVILEGES", although the syntax
requires "ALL PRIVILEGES". A correction is contemplated for later versions of the
ANSI document.

Database Language Ada/SQL
226

UNCLASSIFIED

7. Program environment

7.1 (Ada/SQL compilation unit>

Function

Contain the various parts of an Ada/SQL program.

Format

<Ada/SQL compilation unit> ::-
<authorization package>

I <schema package declaration>
I <schema package body>
I <global variable package>
I <Ada/SQL DML unit>

Effective Ada Declarations

None.

Example

See examples with various types of <Ada/SQL compilation unit>s.

Syntax Rules

None.

General Rules

None.

Notes

1) An <authorization package> declares an <authorization identifier>. A <schema package
declaration> declares data types, subtypes, <named number>s, and tables. A <schema pack-
age body> declares unique constraints on views, the <query specification>s defining views, and
<privileges>. A <global variable package> declares variables and <correlation name>s that
may be referenced from several <Ada/SQL DML unit>s. An <Ada/SQL DML unit> contains
<SQL statement>s manipulating a database.

Program environment
227

UNCLASSII

7.2 -(Ada/SQL DML unit>

Function

Contain <SQL statemient>s matnipulating a database.

Format

<Ada/SQL DML unit> ::-
<context clause>
<Ada/SQL DML unit header>
<Ada/SQL DML unit text>
<Ada/SQL DML unit tradler>

<Ada/SQL DML unit header>::
<procedure header>
I<function header>
I<Package header>
I<subunit header>

<subunit header> ::-
separate <Ada Parent unit name> <separate header>

<Ada parent unit name> ::- legal Ada text not containing any of the following
<Mda mrewJe word>s: procedure, function, package,
task

<Separate header> :
<procedure header>
I<functon header>
I<Package header>
I<task. header>

<procedure header> -
procedure <programi identifier>
[<m'bprograin specification Ada text>]Jis

<function header> ::-
findS.. <programu identifier> <subprogram specification Ada text> is

<package header> ::-
package body <programn identifier> is

<task header> ::-
task body <program identifier> is

<subprogrm specification Ada text> ::- legal Ada text not containing the
<Ada reserved word> i

-CAdaSQL DML unit traUer~' :

Database Language Ada/SQL
228

UwciAssmm

ead I (Cpinogam idealfle)oJ

-CAda/SQL DIL wait telaD :2
[(nee dhae) -. I
[(leed yarable, package2 I
f[(us. dauae0 ... I
4Ad/SQL embedded teiDo..

<Ada/SQL embedded toaiD ::= legal Ada text, containing one or more
(CSQL atatemen~os

Effectdve Ads Declarations

None.

Example

with EXAMPLESDL, EXAMPLEDM1_ADASQL.
procedure EXAMPLEDIU. Is

package LOCAL-VARIABLES Isa
CURSOR :CURSORNAME;

end LOCAL_VARIABLES;
Uso LOCAL_VARIABLES;

begin

DECLAR (CURSOR , CURSORFOR -

SELEC (*C
FROM EM DPLOYE))

-- process the data

end EXAMPLEDML;

Syntax Rules

1) If both the <Ada/SQL DML unit header> and the <Ada/SQL DML unit trailer> contain
<program identifler>s, then both <program identifier>s shall be identical.

2) Let P be the <program identifier> contained in the .cAda/SQL DML unit header>. An
<Ada/SQL DML unit> shall contain P-.ADA-.SQL as a <package name> not contained in a
<local variable package> and also as a <library package name> not contained in a <package
name>. P..ADA-.SQL is called the Mda/SQL definition package associated with the <Ada/SQL
DML unit>.

General Rubes

None.

Programn environment
229

UNCLASSEFIED

Notes

1) Section 53 contains an SR prohibiting <Ada/SQL embedded text> from containing
<Ada/SQL statement name>s, other than the quite common OPEN, CLOSE, and DELETE,
except when actually used as part of <SQL statement>s. This simplifies the Ada/SQL
automated tools' task of locating <SQL statement>s within <Ada/SQL embedded text>.

2) The restrictions on <Ada reserved word>s contained in <Ada parent unit name>s and <sub-
program specification Ada text> are actually not restrictions at all; legal Ada text in those con-
texts could not contain the forbidden <Ada reserved word>s. The restrictions are stated to
make Ada/SQL automated tool parsing strategy obvious, without requiring the tools to under-
stand all of the Ada language.

3) Release 1 implementations do not support <subunit header>s.

4) Release I implementations require that each <Ada/SQL DML unit> be contained in a separate
source file. This is done so that the Ada/SQL automated tools do not have to use Ada syntax to
determine where the <Ada/SQL DML unit> ends.

5) Release 1 implementations do not process <use clause>s or <local variable package>s con-
tained within <Ada/SOL DML unit text>.

Database Language Ada/SQL
230

- A.. L.,. .. m =,,. ~ m n ~ nlam.i

UNCLASSIFIED

7.3 '(SQL statement>

Function

Execute operations manipulating a database.

Format

<SQL statement>:-
<close statement>

I<commit Statement>
I<declare cursor>
I<delete statement: positioned>
I<delete statement: searched>
I<fetch statement>
1<insert statement>
(<open statement>
I<rollback statement>
<select Statement>
I<update statement: positioned>
<update statement: searhed>

I<open database statement>
I<exit database statement>

<open database Statement> ::-
O1PENJ)ATABASE (<authorization identifier> ,<Password>)

<Password> ::-
<database identifier>

<exit database statement> :
EXrrTJ)AABASE;

Effective Ada Declarations

procedure OPEN_-DATABASE
(AUTHORIZATIONIDENTIFIER ,PASSWORD STANDARD.STRING)

procedure EXIT_,DATABASE;

Example

OPEN-DATABASE ("EXAMPLE" , NHELLO")

EXITDATAB3ASE;

see also examples given for each type of <SQL statement>

Syntax Rules

Program environment
231

|a

UNCLASSIrEED

None.

General Rules

1) An <open database statement> shall be the first <SQL statement> executed by a program, oth-
erwise any other <SQL statement> executed before an <open database statement> has been
executed merely raises the INVALIDDATABASESTATE exception. Also, executing a
second or subsequent <open database statement> raises the INVALIDDATABASSTATE
exception.

2) The precise meaning of the <open database statement> is implementation-defined.

3) An <exit database statement> shall be the last <SQL statement> executed by a program, other-
wise any other <SQL statement> executed after executing an <exit database statement> merely
raises the INVALIDJDATABASE&STATE exception.

4) When an <SQL statement>, other than a <declare cursor>, <open database statement>, or
<exit database statement>, is executed by a program and no transaction is active for the pro-
gram, a transaction is effectively initiated and associated with the program for this <SQL state-
ment> and subsequent <SQL statement>s executed by the program until the program ter-
minates the transaction.

5) If an <SQL statement> does not execute successfully, then all changes made to the database by
the execution of that <SQL statement> are canceled and the appropriate exception (covered by
other General Rules) is raised.

Notes

1) <declare cursor> is not an ANSI SQL <SQL statement> because it is not executed in ANSI
SQL, as it is in Ada/SQL.

2) The <open database statement> and <exit database statement> are not part of ANSI SQL.
They are in Ada/SQL to satisfy requirements of underlying database management systems. The
precise semantics of the <open database statement> may vary depending on the particular data-
base management system. For example, in one implementation the <authorization identifier>
might specify a particular database to use. With another implementation, the <authorization
identifier> might be used to determine privileges for access to a database. There is no require-
ment that <authorization identifier> and <password> really have the semantic meaning implied
by their names; the names are selected based on the most common use.

3) The effective parameters to OPEN.DATABASE are of type STANDARD.STRING to ensure
that the type and its component enumeration literals are directly visible without requiring any
additional library units to be wlth'ed by the program.

Database Language Ada/SQL
232

UNCJASSJIE

7.4 <global variable package>' and Clocal variable package>

lip Function

Declare variables and <correlation name>s to be used in <SQL statement>s.

Format

<global variable package>:-
[<context claus>]I
<variable package specification>;

<local variable package> ::-
<variable package specification> ;

<variable package specification>:-
acae<package identifier> Is

[<use clause> .. I
{<correlation name declaration> <variable declaration>

end [<package identifier>

<variable declarati ::-
<simple variable name list> :<subtype indication>

<simple variable name list> ::-
<simple variable name> [(, <simple variable name> ..

<correlation name declaration> ::-
package <correlation name> Is new
<underscored, table name>..CORRELATION.NAME ("<database identifier>")

<underscored table name>::
<table identifier>
<authorzation identifier>.,<table identifier>

Effecive Ada Declarations

For a table t with <authorization identifier> a:

package a-t CORRELATION is
generic
CORRELATIONNAME :STANDARD.STRING,

package NAME IS
- ae sections 5.7 and 5.20 for contents

end NAM,;
end a-tCORRELATION;

package t-CORRZLATION renmes a-tCORRFIATION;
-this declaration is given if and only if the <table, identifier> t is
-- declared in exactly one (schema. package> referenced from the

Prograns envi rommnt
233

UCLASSIFIED

- (variable package specification> f or which the declaration is
-- effective

ExaMple

Wi th EXAMPLE TYPES, EXAMPLE _SDL, EXAMPLE VARIABLESADASQL;
package ZXAMPLEJARIABLES I a

use EXAMPLETYPES. ADA_SQL, EXAMPLEVARIABLESADASQL;

CURRENT_-EPLOYEE,
HIS -MANAGER OMPLOTEE lAME;
HIS -SALARY EPLOYEE -SALARY;
CURSOR CURSOR-NAME,

0 ~ EPLOYEE_-LAST,
MANAGERILAST NATURAL,
SALARYINDICATOR#
MANAGERINDICATOR INDICATOR-VARIABLE;

package E Is new ZMPLOYEE-CORRfLAATION.NAME ("E")--employees
package M is new EPLOYEE3CORRELATION.NAME (OM) managers

end EXAMPLEVARIABLES;

see also section 7.2 for an example of a <local variable package>

Syntax Rules

1) If a <variable package specification> contains two <package identifier>s, then both <package
identifier>s shall be identical.

2) Each <simple variable name> and <correlation name> shall be distinct from any other <sim-
pie variable name> and <correlation name> within the containing <variable package
specification>.

3) If the <type mark> of the <subtype indication> denotes an unconstrained character string sub-
type, then the <subtype indication> shall also contain an <index constraint> to define the index
range of the variable.

4) 1The <correlation name> and the <database identifier> in a <correlation name declaration>
shall be identical.

3) T"he <table name> represented in an <underscored table name> is determined as follows:

Case:

a) Uf an <authorization identifier> is specified, then the <table name> formed as <authori-
zation identifler>.<table identifier>, using the contained <authorization identifier> and
<table identifier>, is the one represented in the <underscored table name>.

Database Language Ada/SQL
234

UNCLASSIFID

4b) If an <authorization identifier> is not specified, then the <table name> formed as the
contained <table identifier> is the one represented in the <underscored table name>.

6) 'Let P be the <package identifier> contained in the <variable package specification> contained
in a <global variable package>. If and only if the <global variable package> contains any
<correlation name declaration>s, then it shall contain P..ADA..SQL as a <package name> and
also as a <library package name> not contained in a <package name>. P.ADA..SQL is called
the Ada/SQL deflAition package associated with the <global variable package>.

General Rules

1) The first <package identifier> is declared to be the name of the containing <global variable
package> or <local variable package>.

2) A <variable declaration> declares its contained <simple variable name>s. Each <simple vari-
able name> denotes a program variable. The subtype of the program variable is given by the
<subtype indication> contained in the <variable declaration>.

3) A <correlation name declaration> declares its contained <correlation name> as a <correla-
tion name> for the table whose <table name> is represented in the contained <underscored
table name>.

Notes

1) ANSI SQL <correlation name>s are declared in their containing <SQL statement>s. In order
to make the effective Ada declarations possible for Ada/SQL, however, it is necessary that
Ada/SQL <correlation name>s be separately declared with <correlation name declaration>s.
This means that a <correlation name> must always refer to the same table, although it can be
used in several different <SQL statement>s.

2) Release I implementations require that each <global variable package> be contained in a
separate source file, and that the name of the file be the same as the name of the <global variable
package>, possibly augmented with an implementation-dependent indication that the file con-
tains Ada source code. This is done so that the text of a <global variable package> can be found
when its name is encountered in a <with clause>.

3) Release 1 implementations do not support <local variable package>s.

4) Release I implementations do not support <authorization identifler>s in <underscored table
name>s.

Program environment
235

UNCLASSIFIED

8. Data manpulation language

GeneralRules

1) A program shall not, via concurrent tasking, simultaneously execute any of the following state-
ments (including two of the same statement): <delete statement: searched>, <insert state-
ment>, <select statement>, <update statement: searched>. Otherwise, the program is errone-
owS.

2) A program shall not, via concurrent tasking, simultaneously execute any of the following state-
ments (including two of the same statement) for the same <cursor name>: <close statement>,
<declare cursor>, <delete statement: positioned>, <fetch statement>, <open statement>,
<update statement: positioned>. Otherwise, the program is erroneous.

3) A program shall not, via concurrent tasking, simultaneously execute a <commit statement> or a
<rollback statement> and any statement including a <cursor name> (listed in GR2). Other-
wise, the program is erroneous.

4) Any program whose effect depends on the order of processing two statements simultaneously
executed (not synchronized by the program) from concurrent tasks is erroneous.

Database Language Ada/SQL
236

UNCLASSIFIE

8.1 close statement>

Function

Close a cursor.

Format

<close statement> ::-
CLOSE (<cursor name>);

Effective Ada Declarations

procedure CLOSE (CURSOR In out CURSOR_NAME);

Example

CURSOR : CURSORNAME;

CLOSE (CURSOR);

Syntax Rules

None.

General Rules

1) The program shall have executed a <declare cursor> whose <cursor name> is the same as the
<cursor name> of the <close statement>; otherwise, the INVALIDCURSORSTATE excep-
tion is raised.

2) Let CR denote the cursor defined by the last such <declare cursor> executed.

3) Cursor CR shall be in the open state; otherwise, the INVALIMDCURSOR_STATE exception is
raised.

.4) Cursor CR is placed in the closed state and the copy of the <cursor specification> of CR is des-
toyed.

Notes

1) The Ada/SQL <close statement> conforms to the ANSI SQL <close statement>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

i Data manipulation language
237

L li n i l

UNCLASSIFIED

ANSI SQL I Ada/SQL
SR1 Gl1-3R2

GR-GR2 GR3-GR4

2) The expression of ANSI SQL SRI as Ada/SQL GRs is necessary because a <declare cursor> is
declarative in ANSI SQL, while being executable in Ada/SQL.

3) The sequence of operations on a cursor implied by the rules is as follows:

a) Compile time

i) Declare a program variable of type CURSOR-NAME to denote the cursor.

b) Execution time

i) DECLAR the cursor

ii) OPEN the cursor

ii!) Process data through the cursor (this aspect is not addressed by the rules of this sec-
tion)

iv) CLOSE the cursor

Database Language Ada/SQL
238

UNCLASSIFIED

8.2 <commit statement>

Function

Terminate the current transaction with commit.

Format

<commit statement> ::-
COMMITWORK;

Effective Ada Declarations

procedure COMMT_.WORK;

Example

COMMIT.WORK;

Syntax Rules

None.

General Rules

1) The current transaction is terminated.

2) Any cursors that were opened by the current transaction are closed.

3) Any changes to the database that were made by the current transaction are committed.

Notes

1) The Ada/SQL <commit statement> conforms to the ANSI SQL <commit statement>.

2) Release 1 implementations do not support the <commit statement>.

Data manipulation language
239

UNCLASSIFIED

8.3 <declare cursor>

Function

Define a cursor.

Format

<declare cursor> ::-
DECLAR (<cursor name>, CURSOR-FOR ->

<cursor specification>);

<cursor specification> ::-
<query expression> [,
<order by clause>]

<query expression> ::-
<query term>

I <query expression> & { UNION I UNONALL } (<query term>)
I <query expression> & { UNION I UNION.ALL } <query term>

<query term> ::-
<query specification> I (<query expression>)

<order by clause> ::-
ORDER.BY -> <sort specification> [{ & <sort specification> }...

<sort specification> ::-
<sort column specification>

I ASC (<sort column specification>)
I DESC (<sort column specification>)

<sort column specification> ::-
<column number> I <column specification>

<column number> ::-

<integer>

Effective Ads Declarations

type QUERYEXPRESSION is private;

type SORTSPECIFICATION is private;

type UNIONZDQUERY_EXPRESSION is private;

type COLUMNNUMBER Is range 1 .. implementatfonLdefined;

NULLSORTSPECIFICATION : Constant SORT_SPECIFICATION;

Database Language Ada/SQL
240

UENCASSIFIH

procedure DECLAR
CURSOR In out CURSORNAME;
CURSORFOR 8i QUERYEXPRESSION;
ORDERBY In SORTSPECIFICATION

: NULLSORTSPECIFICATION);

procedure DECLAR
CURSOR In out CURSORNAME;
CURSORFOR :in QUERY_EXPRESSION;
ORDERBY In COLUMNNUMBER);

procedure DECLAR
(CURSOR In out CURSORNAME;
CURSORFOR In QUERY_EXPRESSION;

ORDERBY : COLUMNSPECIFICATION);

procedure DECLAR
(CURSOR In out CURSORNAME;

CURSOR FOR In QUERYSPECIFICATION;
ORDER-BY in SORTSPECIFICATION

:- NULLSORTSPECIFICATION);

procedure DECLAR
CURSOR in out CURSORNAME;
CURSORFOR In QUERYSPECIFICATION;
ORDERBY In COLUMNNUMBER);

procedure DECLAR
(CURSOR In out CURSORNAME;

CURSORFOR In QUERYSPECIFICATION;
ORDERBY In COLUMNSPECIFICATION);

function 'S' (LEFT QUERY-EXPRESSION;
RIGHT UNIONED_QUERYEXPRESSION

return QUERYEXPRESSION;

functio " (LEFT QUERY-SPECIFICATION;
RIGHT UNIONED_QUERY EXPRESSION

return QUERYEXPRESSION;

function UNION (RIGHT : QUERY_EXPRESSION) return UNIONED_0UERYEXPRESSION;

function UNION-ALL (RIGHT : QUERY_EXPRESSION
return UNIONED_QUERY_EXPRESSION;

function UNION (RIGHT : QUERYSPECIFICATION
return UNIONED_QUERYEXPRESSION;

function UNION-ALL (RIGHT : QUERY_SPECIFICATION
return UNIONED_QUERYEXPRESSION;

function R&O (LEFT SORTSPECIFICATION;

Data mnipulation language
241

04SSIFIED

RIGHT : SORTSPECIFICATION) return SORTSPECIFICATION;

function "V (LEFT : COLUMNSPECIFICATION;
RIGHT : COLUMNSPECIFICATION) return SORTSPECIFICATION;

function " (LEFT SORTSPECIFICATION;
RIGHT COLUMNSPECIFICATION) return SORTSPECIFICATION;

function 00 (LEFT COLUMNSPECIFICATION;
RIGHT : SORTSPECIFICATION) return SORTSPECIFICATION;

function "& (LEFT COLUMNNUMBER;
RIGHT COLUMNNUMBER) return SORTSPECIFICATION;

function Ear (LEFT SORT SPECIFICATION;
RIGHT COLUMNNUMBER) return SORTSPECIFICATION;

function Etr (LEFT : COLUMN_NUMBER;
RIGHT : SORTSPECIFICATION) return SORTSPECIFICATION;

function E&" (LEFT : COLUMNSPECIFICATION;
RIGHT COLUMN_NUMBER) return SORTSPECIFICATION;

function Etr (LEFT COLUMN_NUMBER;
RIGHT : COLUMNSPECIFICATION) return SORTSPECIFICATION;

function ASC (RIGHT COLUMN_SPECIFICATION) return SORT_SPECIFICATION;

function ASC (RIGHT : COLUMN_NUMBER) return SORT-SPECIFICATION;

function DESC (RIGHT : COLUMNSPECIFICATION) return SORTSPECIFICATION;

function DESC (RIGHT : COLUMNNUMBER) return SORTSPECIFICATION;

Example

package E is new EMPLOYEECORRELATION.NAME (WE"); -- employees
package M Is new EMPLOYEECORRELATION.NAME ("ME); -- managers

CURSOR : CURSORNAME;

DECLAR (CURSOR , CURSORFOR -)
SELEC (NAME & SALARY & MANAGER,
FROM -) EMPLOYEE),
ORDERBY -> MANAGER & DESC(SALARY));

-- variations: ORDERBY -) 3 & DESC(2)
-- ORDERBY -) ASC(3) & DESC(SALARY), etc.

DECLAR (CURSOR, CURSORFOR ->
SELEC (NAME & SALARY & MANAGER,
FROM -) EMPLOYEE,

Database Language Ada/SQL
242

UNIASSIFIED

WHEE -> SALARY > 25_000.00
UNION (

SELEC (E.NAME & -. SALARY & E.MANAGER,
FROM -) E.EPLOYZE & N.DEPLOYEE,
WHERE-) EQ (E.MANAGER , M.NAME
AD E.SALARY > X.SALARY)));

-- variations: UNION-ALL

Syntax Rules

1) A <query term> immediately contained in a <query expression> also immediately containing
an ampersand shall be surrounded by parentheses if it immediately contains a <query
specification>.

2) Let T denote the table specified by the <cursor specification>.

3) Case:

a) If ORDER.BY is specified, the T is a read-only table with the specified sort order.

b) U none of ORDER-BY, UNION, or UNION-ALL is specified and the <query
specification> is updatable, then T is an updatable table.

c) Otherwise, T is a read-only table.

4) Case:

a) If neither UNION nor UNION.ALL is specified, then the description of T is the descrip-
tion of the <query specification>.

b) If UNION or UNION-ALL is specified, then for each UNION or UNION-ALL that is
specified, let TI and "2 denote the tables specified by the <query expression> and the
<query term>. The <select list>s for the specification of T1 and 12 shall consist of '',
<column specification>s, or <column specificadon>s to which one or more
CONVERT-TO operators are applied.. Except for colun names, the descriptions of Ti
and T2 shall be identical. All columns of the result are unnamed. Except for <column
names>s, the description of the result is the same as the description of Ti and "2.

5) If ORDER-BY is specified, then each <column specification> in the <order by clause> shall
identify a column of T, and each <column number> in the <order by clause> shall be greater
than 0 and not greater than the degree of T. A named column may be referenced by a <column
number> or a <column specification>. An unnamed column shall be referenced by a <column
number>.

General Rules

C
Data mampuladon language

243

UNCLASSIFIED

1) The cursor CR denoted by the <cursor name> shall not be in the open state; otherwise, the
INVALIDCURSOR..STATE exception is raised.

2) Case:

a) If T is an updatable table, then the cursor is associated with the named table identified by
the <table name> in the <from clause>. Let B denote that named table. For each row in
T, there is a corresponding row in B from which the row ofT is derived. When the cursor
is positioned on a row of T, the cursor is also positioned on the corresponding row of B.

b) Otherwise, the cursor is not associated with a named table.

3) Case:

a) If neither UNION nor UNION-ALL is specified, then T is the result of the specified
<query specification>.

b) If UNION or UNIONALL is specified, then for each UNION or UNION-ALL that is
specified let T1 and T2 be the result of the <query expression> and the <query term>.
The result of the UNION or UNION..ALL is effectively derived as follows:

i) Initialize the result to an empty table.

ii) Insert each row of Ti and each row of T2 into the result.

iii) If UNION, rather than UNION..ALL, is specified, then eliminate any redundant
duplicate rows from the result.

4) Case:

a) If ORDER-BY is not specified, then the ordering of rows in T is implementor-defined.
This order is subject to the reproducibility requirement within a transaction, but it may
change between transactions. The execution of a program is erroneous if its effect depends
on the ordering of rows in T.

b) If ORDER-BY is specified, then T has a sort order:

i) The sort order is a sequence of sort groups. A sort group is a sequence of rows in
which all values of a sort column are identical. Furthermore, a sort group may be a
sequence of sort groups.

ii) The cardinality of the sequence and the ordinal position of each sort group is deter-
mined by the values of the most significant sort column. The cardinality of the
sequence is the minimum number of sort groups such that, for each sort group of
more than one row, all values of that sort column are identical.

Database Language Ada/SOL
244

UNCLASS|FIE

iii) If the sort order in based on additional sort columns, then each sort group of more
than one row is a sequence of sort groups. The cardinality of each sequence and the
ordinal position of each sort group within each sequence is determined by the values
of the next most significant sort column. The cardinality of each sequence is the
minimum number of sort groups such that, for each sort group of more than one
row, all values of that sort column are identical.

iv) The preceding paragraph applies in turn to each additional sort column. If a sort
group consists of multiple rows and is not a sequence of sort groups, then the order
of the rows within that sort group is undefined. "he execution of a program is
erroneous if its effect depends on the order of rows in such a sort group.

v) Let C be a sort column and let S denote a sequence which is determined by the
values of C.

vi) A sort direction is associated with each sort column. If the direction of C is ascend-
ing, then the first sort group of S contains the lowest value of C and each successive
sort group contains a value of C that is greater than the value of C in its predecessor
sort group. It the direction is descending, then the first sort group of S contains the
highest value of C and each successive sort group contains a value of C that is less
than the value of C in its predecessor sort group.

vii) Ordering is determined by the comparison rules specified in 5.11, "<comparison
predicate>". The order of the null value relative to nonnull values is implementor-
defined, but shall be either greater than or less than all nonnull values. The execu-
tion of a program is erroneous if its effect depends on the order of null values relative
to nonnull values.

viii) A <sort specification> specifies a sort column and a direction. The sort column is
the column referenced by the <column number> or the <column specification>.
The <column number> i references the i-th column of T. A <column
specification> references the named column.

ix) If DESC is specified in a <sort specification>, then the direction of the sort column
specified by that <sort specification> is descending. If ASC is specified or if nei-
ther ASC nor DESC is specified, then the direction of the sort column is ascending.

x) The <sort specification> sequence determines the relative significance of the sort
columns. The sort column specified by the first <sort specification> is the most
significant sort column and each successively specified sort column is less significant
than the previously specified sort column.

5) Let CS denote the <cursor specification>.

6) A copy of CS is effectively created in which each <program object name> is replaced by the
value of the entity that it denotes. The execution of a program is erroneous if any such value is
undefined.

Data manipulation language
245

UNCLASSEPE

Notes

1) The only form of <query expression> supported by Release 1 implementations is <query
term>.

2) The only form of <query term> supported by Release I implementations is <query
specification>.

3) The Ada/SQL <declare cursor> conforms to the ANSI SOL <declare cursor>. The
correspondence between Ada/SQL rules and ANSI SOL rules is as follows:

ANSI SOL Ads/SQL See Notes
- SRI 4

SRI - 5
SR2 - 6

SR3-SRS SR2-SR4

SR6 SRS 7
- GRI 5

GR1-GR3 GR2-GR4 8
- I-GRS-GR6

4) Without Ada/SQL SRI, the BNF grammar would permit omusion of the parentheses around a
<query specification> parameter of a UNION or UNION..ALL effective function.

5) <declare cursor>s are declarative within ANSI SQL. Hence, ANSI SQL SRI ensures that
there is only one <declare cursor> for each <cursor name>. <declare cursor>s are, however,
executable within Ada/SQL. The same <cursor name> may be used in successive executions of
Ada/SQL <declare cursor>s, as long as the cursor denoted by that <cursor name> has not yet
been declared or has been closed (see Ada/SQL GRI). Such successive executions may be used
to declare several curmrs differing only in the values of program objects used as selection cri-
teria. In ANSI SOL, these values are placed in the cursor when the appropriate <open state-
ment> is executed. In Ada/SQL, these values are placed in the cursor when the <declare cur-
sor> is executed (see Ada/SQL GR5-GR6). The Ada/SQL execution of a <declare cursor>
followed by an <open statement> for that cursor will be equivalent to the ANSI SQL execution
of an <open statement> (using the appropriate program values as parameters) for a correspond-
ing <declare cursor> provided that the Ada/SQL program does not change the values of pro-
gram variables referenced in the <declare cursor> between execution of the <declare cursor>
and its corresponding <open statement>. Note that any potential difference between Ada/SQL
and ANSI SOL is limited to the values of program variables; the state of the database is con-
sidered to determine which rows will initially be present within the table designated by a cursor at
the time the <open statement> is executed, in both Ada/SQL and ANSI SQL.

6) ANSI SQL SR2 is not applicable to Ada/SQL, which does not have <parameter name>s.

Database Language Ada/SQL 246

UNCLASSIPED

7) Ada/SQL uses a unique syntactic class, <column number>, for the number of a column in a
<sort specification>, rather than the general ANSI SQL <unsigned integer> (or its Ada/SQL
equivalent, <integer>), because of the restriction that a <column number> may not be 0. This
restriction is reflected in the effective definition of type COLUMNNUMBER.

8) Ada/SQL GR4.b.viii corrects two errors in ANSI SQL GR3.b.viii.

i

Data manipuladon lagage
247

UNCLASSIFIED

8.4 <delete statement: positioned>

Function

Delete a row of a table.

Format

<delete statement: positioned> ::-
DELETEFROM (<table name>,
WHER&CURRENTOF -> <cursor name>);

DELETE (FROM-> <table name>,
WHERECURRENTOF -> <cursor name>);

Effective Ada Declarations

procedure DELETEFROM
TABLE in TABLENAME;
WHERE CURRENTOF in out CURSOR-NAME);

procedure DELETE
FROM : in TABLENAME;
WHERE CURRENT_OF : In out CURSOR NAME) renmes DELETEFROM;

Example

CURSOR : CURSOR_NAME;

DELETEFROM (EMPLOYEE,
WHERE CURRENT_OF -> CURSOR);

-- variation: DELETE (FROM -) EMPLOYEE,

-- WHEZCURRENT OF -> CURSOR);

Syntax Rules

1) Both forms of the <delete statement: positioned> are equivalent.

2) The applicable <privileges> for the <table name> shall include DELETE.

NOTE The "applicable <privileges>" for a <table name> are defined in 6.6, "<privilege
definition>".

General Rules

1) The program shall have executed a <declare cursor> whose <cursor name> is the same as the
<cursor name> in the <delete statement: positioned>; otherwise, the
INVALIDCURSOR.STATE exception is raised.

Database Language Ada/SQL
248

UNCLASSUFIE

2) Let CR denotethe cursor defined by the last such <declare cursor> executed.

3) The table designated by CR shall not be a read-only table; otherwise, the
INVALIDCURSORSTATE exception is raised.

4) Let T denote the table identified by the <table name>. T shall be the table identified in the first
<from clause> in the <cursor specification> of CR; otherwise, the
INVALIDCURSORSTATE exception is raised.

5) Cursor CR shall be positioned on a row; otherwise, the INVALIDCURSORSTATE exception
is raised.

6) The row from which the current row of CR is derived is deleted.

Notes

1) The Ada/SQL <delete statement: positioned> conforms to the ANSI SQL <delete statement:
positioned>. The correspondence between Ada/SQL rules and ANSI SOL rules is as follows:

ANSI SQL Ada/SQL See Notes
-- SRI 2

SRI SR2 -

SR2 GR1-2 3
SR3-SR4 GR3-GR4 3

GR1-GR2 GR5-GR6 -

2) The first form of the <delete statement: positioned> is that originally defined for Ada/SQL, and
is provided for upward compatibility. The second form is designed to use the same DELETE
<keyword> as for <privileges>.

3) The expression of ANSI SOL SR2-SR4 as Ada/SQL GRs is necessary because a <declare cur-
sor> is declarative in ANSI SOL, while being executable in Ada/SQL.

4) Release 1 implementations do not support the <delete statement: positioned>.

Data manipulation language
249

UNCLASSIFIED

8.5 Cdl te statement: searched>

Function

Delete rows of a table.

Format

<delete statement: searched> ::-
DELETE-FROM (<table name> [,
WHERE -> <search condition>]);I
DELETE (FROM -> <table name> [,
WHERE -> <search condition I);

Effective Ada Declarations

procedure DELETEFROM
TABLE : in TABLENAME;

WHERE in SEARCHCONDITION : NULLSEARCHCONDITION);

procedure DELETE
(FROM : In TABLE_NAME;

WHERE : In SEARCHCONDITION -NULLSEARCHCONDITION
renams DELETEFROM;

Example

DELETEFROM (EMPLOYEE,
WHERE -> SALARY > 25_000.00);

DELETEFROM (EMPLOYEE);

-- variations: DELETE (FROM -) EMPLOYEE,
-- WHERE -> SALARY > 25_000.00);

DELETE (FROM -) EMPLOYEE);

Syntax Rules

1) Both forms of the <delete statement: searched> are equivalent.

2) The applicable <privileges> for the <table name> shall include DELETE.

NOTE: The "applicable <privileges>" for a <table name> are defined in 6.6, "<privilege
definition>".

3) Let T denote the table identified by the <table name>. T shall not be a read-only table or a table
that is identified in a <from clause> of any <subquery> contained in the <search condition>.

Database Language Ada/SQL
250

UNCLASSIFIED

4) The scope of the <table name> is the entire <delete statement: searched>.

General Rules

1) Case:

a) If a <search condition> is not specified, then all rows of T are deleted.

b) If a <search condition> is specified, then it is applied to each row of T with the <table
name> bound to that row, and all rows for which the result of the <search condition> is
true are deleted. Each <subquery> in the <search condition> is effectively executed for
each row of T and the results used in the application of the <search condition> to the
given row of T. If any executed <subquery> contains an outer reference to a column of T,
the reference is to the value of that column in the given row of T.

NOTE: "Outer reference" is defined in 5.7, "<column specification>".

2) If no rows are deleted, the NO-DATA exception is raised.

Notes

1) The Ada/SQL <delete statement: searched> conforms to the ANSI SQL <delete statement:
searched>. The correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes

- SRI 2,3
SRI-SR3 SR2-SR4 -

GRI GR1 -

GR2 4

2) The first form of the <delete statement: searched> is that originally defined for Ada/SQL, and
is provided for upward compatibility The second form is designed to use the same DELETE
<keyword> as for <privileges>.

3) Release 1 implementations do not support the second form of the <delete statement:
searched>.

4) Ada/SQL GR2 corresponds to ANSI SQL GR3a.iv of 7.3.

Data manipulation language
251

UNCLASSIFIED

8.6 <fetch statement>

Function

Position a cursor on the next row of a table and retrieve values from that row.

Format

<fetch statement> ::-
FETCH (<cursor name>);
<fetch target list>

<fetch target list> ::-
<fetch into substatement>

[<fetch into substatement> ...]

<fetch into substatement> ::-

INTO (<target specification> [, <cursor name>]);

Effective Ada Declarations

procedure FETCH (CURSOR In out CURSORNAME);

For an integer, floating point, or enumeration program data type ct:

procedure INTO
(TARGET out ct;

INDICATOR out INDICATOR-VARIABLE;
CURSOR In CURSORNAME - NULLCURSORNAME);

procedure INTO
TARGET out ct;
CURSOR In CURSOR-NAME :- NULLCURSORNAME);

For a character string program data type ct with index data type i:

procedure INTO
TARGET out ct;
LAST out i;
INDICATOR out INDICATORVARIABLE;

CURSOR In CURSORNAME -NULLCURSORNAME);

procedure INTO
(TARGET out ct;

LAST out i;
CURSOR In CURSORNAME NULLCURSORNAME);

Example

CURRENTEMPLOYEE,

Database Language Ada/SQL
252

ENIASSIFIED

HIS MANAGER EMPLOYEE NAME;
HISSALARY : E4PLOYEE SALARY;
CURSOR : CURSOR_NAME;
EMPLOYEELAST,
MANAGERLAST : NATURAL;
SALARYINDICATOR,
MANAGERINDICATOR : INDICATORVARIABLE;

DECLAR (CURSOR , CURSORFOR-)
SELEC (NAME & SALARY & MANAGER,
FROM EMPLOYEE));

FETCH (CURSOR);
INTO (CURRENTEMPLOYEE , EMPLOYEE-LAST);
INTO (HIS SALARY , SALARYINDICATOR); -- variation: INTO (HISSALARY);
INTO (HIS-MANAGER , MANAGERLAST , MANAGER INDICATOR);

- variations: same as INTO calls shown above, but add last CURSOR parameter

Syntax Rules

1) The <cursor name> of a <fetch into substatement> shall be the same as the <cursor name> of
its containing <fetch statement>.

General Rules

1) Any <fetch into substatement> executed by a task while other tasks within the same program
are concurrently executing <fetch statement>s shall include a <cursor name>; otherwise, the
execution of the program is erroneous.

2) The program shall have executed a <declare cursor> whose <cursor name> is the same as the
<cursor name> in the <fetch statement>; otherwise, the INVALID_.CURSOR..STATE excep-
tion is raised.

3) Let CR denote the cursor defined by the last such <declare cursor> executed.

4) Let T be the table defined by the <cursor specification> of CR.

5) The number of <fetch into substatement>s in the <fetch target list> shall be the same as the
degree of table T; otherwise, the INVALID-CURSOR..STATE exception is raised.

6) The data type of the target designated by the <target specification> of the i-th <fetch into sub-
statement> shall be the same as the data type of the i-th column of table T; otherwise, the
INVALIDCURSOR..STATE exception is raised.

7) Cursor CR shall be in the open state; otherwise, the INVALIDCURSORSTATE exception is
raised.

Data manipulation language
253

UNCLASSIFIED

8) If the table designated by cursor CR is empty or if the position of CR is on or after the last row,
CR is positioned after the last row (if any), the NO-DATA exception is raised, and the values of
the targets identified by the <target specification>s of the <fetch into substatement>s are
undefined. The execution of a program is erroneous if it attempts to evaluate such an undefined
integer, floating point, or enumeration target, or if its effect depends on the value of such an
undefined character string target.

9) If the position of CR is before a row, CR is positioned on that row and values in that row are
assigned to their corresponding targets.

10) If the position of CR is on r, where r is a row other than the last row, CR is positioned on the row
immediately after r and values in the row immediately after r are assigned to their corresponding
targets.

11) The assignment of values to targets in the <fetch target list> is in an implementor-defined order.
The execution of a program is erroneous if its effect depends on this order.

12) If an error occurs during the assignment of a value to a target, then either the
DATA.EXCEPTION or the CONSTRAINT-ERROR exception is raised and the values of all
targets are undefined. The execution of a program is erroneous if it attempts to evaluate such an
undefined integer, floating point, or enumeration target, or if its effect depends on the value of
such an undefined character string target. (Specific circumstances in which each exception is
raised are described below.)

13) Let V be a target and let v denote its corresponding value in the current row of CR.

14) Case:

a) If v is the null value, then:

Case:

i) If an indicator is specified for V, then that indicator is set to NULL-VALUE and the
values of the variables denoted by the <variable name>s of the <program variable>
and <last variable> (if any) of V are undefined. The execution of a program is
erroneous if it attempts to evaluate such an undefined integer, floating point, or
enumeration variable, or if its effect depends on the value of such an undefined char-
acter string variable.

ii) If an indicator is not specified for V, then the DATA_.EXCEPTION exception is

raised.

b) If v is not the null value and V has an indicator, then that indicator is set to NOT.NULL.

15) The target identified by the <target specification> of the i-th <fetch into substatement> in the
<fetch target list> corresponds to the i-th value in the current row of CR.

Database Language Ada/SQL
254

UNCLASSIFIED

16) Ifvisnot the null value, then:

Case:

a) U V is of a character string type, then:

Case:

i) If the length of v is zero, then:

1) The value of the variable denoted by the <variable name> of the <program
variable> of V is left undefined. The execution of a program is erroneous if its
effect depends on the value of such an undefined variable.

2) Case:

a. If the index of the first character in the <program variable> of V has a
predecessor, then:

Case:

i. If that predecessor belongs to the subtype of the variable denoted by
the <variable name> of the <last variable> of V, then the value of that
variable is set to that predecessor.

ii. If that predecessor does not belong to the subtype of the variable
denoted by the <variable name> of the <last variable> of V, then the
CONSTRAINT-ERROR exception is raised.

b. If the index of the first character in the <program variable> of V does
not have a predecessor, then the DATA-EXCEPTION exception is
raised.

ii) If the length of v is not zero, and is equal to or less than the length of the <program
variable> of V, then:

1. Case:

a. If all characters of v belong to the subtype of the characters of the <pro-
gram variable> of V, then successive characters of the variable denoted
by the <variable name> of the <program variable> are replaced with
successive characters of v. Characters not replaced are left undefined;
the execution of a program is erroneous if its effect depends on the value
of any of these undefined characters.

b. If any characters of v do not belong to the subtype of the characters of
the <program variable> of V, then the DATA.EXCEPTION exception

Data manipulation language
255

UNCLASSIE

is raised.

2. Case:

a. If the index of the last character replaced, taken relative to the index
bounds of the subtype of the <program variable> of V, belongs to the
subtype of the variable denoted by the <variable name> of the <last
variable> of V, then the value of that variable is set to that index.

b. If the index of the last character replaced, taken relative to the index
bounds of the subtype of the <program variable> of V, does not belong
to the subtype of the variable denoted by the <variable name> of the
<last variable> of V, then the CONSTRAINT-ERROR exception is
raised.

iii) If the length of v is greater than the length of the <program variable> of V, then the

DATA...EXCEPTION exception is raised.

b) If V is of an integer, floating point, or enumeration type, then:

Case:

i) If v belongs to the subtype of the variable denoted by the <variable name> of the
<program variable> of V, then the value of that variable is set to v.

ii) If v does not belong to the subtype of the variable denoted by the <variable name>
of the <program variable> of V, then the CONSTRAINT-ERROR exception is
raised.

17) If v is not the null value and the column of T from which it is taken is a named column, then the
DATA.EXCEPTION exception is raised if v does not belong to the subtype declared for that
column.

Notes

1) Release 1 implementations do not support the optional <cursor name> in the <fetch into sub-
statement>. Hence, <fetch statement>s may not be issued from more than one concurrently
executing task within a program using such an implementation.

2) Release 1 implementations do not support null values. Indicators may therefore not be used
within <target specification>s. Only the effective Ada declarations for INTO procedures not
including an INDICATOR..VARIABLE parameter are relevant to Release 1 implementations,
and the procedures do not include the final CURSOR-NAME parameter.

3) Release 1 implementations have different exceptions for conditions covered by
DATA-EXCEPTION and CONSTRAINT-ERROR. They have a separate exception,

Database Language Ada/SQL
256

UNCLASSIFIED

NULL.ERROR, which is raised for a null value returned without an indicator variable
(DATA-EXCEPTION raised according to this standard). Otherwise, they do not distinguish
between DATA-EXCEPTION and CONSTRAINTERROR as does this standard;
CONSTRAINTERROR is raised in all cases. Due to this standard's lack of a separate
NULLERROR, application programs can no longer explicitly distinguish errors that would
have raised NULLERROR. Enhanced error reporting is planned for later versions of SQL, and
incorporation of those features into Ada/SQL should restore this capability

4) The Ada/SQL <fetch statement> conforms to the ANSI SOL <fetch statement>. The
correspondence between Ada/SQL rules and ANSI SOL rules is as follows:

ANSI SOL Ada/SQL See Notes
- SRI 5

GRI 5
SR1-SR2 GR2-GR5 6

SR3 GR6 6,7
GRi-GR7 GR7-GRI3 -

GR8 GR14 8
GR9 GR15 -

GR1O GR16 9
GR17 10

5) If <fetch into substatement>s are actually implemented by their effective Ada declarations, then
each INTO procedure executed must somehow be associated with its appropriate FETCH. If
only a single task in a program is issuing FETCHes and INTOs, then the association can be main-
tained with a global variable. If, however, several concurrently executing tasks in the same pro-
gram are issuing FETCHes and INTOs, the <cursor name> mechanism provides the associa-
tion.

6) The expression of ANSI SQL SR1-SR3 as Ada/SQL GRs is necessary because a <declare cur-
sor> is declarative in ANSI SQL, while being executable in Ada/SQL.

7) Ada/SQL GR6 expresses one aspect of Ada/SQL's strong typing. Release 1 implementations do
not provide this aspect of type checking. CONSTRAINT-ERROR may be raised for gross typ-
ing violations, such as retrieving a character string column into an integer variable.

8) Ada/SQL indicator variables are of an enumeration type, used only to indicate whether or not a
value is null. The condition for which ANSI SQL indicator variables serve a dual purpose as
flags, truncation of a retrieved character string, is an error in Ada/SQL.

9) See the general discussion of character strings in section 4.2.1. Ada/SQL does not right pad
retrieved character strings with blanks, to be analogous to TEXT.O. It is considered an error
to retrieve a character string value that is longer than the target variable, consistent with Ada's
constraint checking for array assignment. Ada/SQL retrievals provide subtype checking.

Data manipulaton language
257

UNCLASSIEM

10) Ada/SQL validates subtype constraints when data are placed into a database by a program, and
also validates them when data are retrieved from a database. Unless the database also supports
such constraint checking, however, it is possible to execute database operations wherein data
violating subtype constraints are created within the database, without passing through a program.
GR17 provides for treating the retrieval of such invalid data as an error condition. Release 1
implementations do not support this checking, although they do, of course, perform the subtype
checking of GRI6, since that is a consequence of Ada semantics. If values from a column are
always retrieved into variables of the same subtype as the column, then this Ada constraint
checking is equivalent to that of GR7.

Database Language Ada/SQL
258

UNCLASSUflF

8.7 '(Insert dtent>'

Create now rows in a table.

Format

<imacil statement> :
INSERT.JNTO (<table name with optional column list>,

(VALUES <- <insert value list> }I<query specification>)

INSERT (INTO -> <table name with optional column list>,
f VALUES <- <insert value list> }<query specification>)

<insert value list> ::-
<insert value>[{and<insert value>}..

<insert value> ::-
<value specification> I NULL-VALUE

Effective Ada Declarations

type INSERT-VALUELIST Is private,

type INSERTVALUELISTSTARTER Is private;

type NULL-JNSERTJVALUE Is private;

procedure INSERT -INTO
TABLE In TABLENAME;
VALUES In INSERTVALUELIST)

procedure INSERT-INTO
TABLE : In TABLENAMEWITHCOLUMNLIST;
VALUES : In INSERTVALUELIST)

procedure INSERTINTO
(TABLE :Ini TABLE-NAME,

QUERY In QUERY-SPECIFICATION)

procedure INSERT INTO
(TABLE :In TABLENAMEWITHCOLUMN LIST;
QUERY :In QUERYSPECIFICATION)

procedure INSERT
INTO :In TABLENAME;
VALUES In INSERTVALUELIST) renmica INSERT_INTO;

procedure INSERT

259 Data mnipulat ion language

LNIASSIFIE

C INTO In TABLE_NAME_WITH COLU1N_LIST;
VALUES in INSERTVALUELIST) reumes INSERTINTO;

procedure INSERT
C INTO in TABLENAME;
QUERY In QUERYSPECIFICATION) remamna INSERT-INTO;

procedure INSERT
INTO in TABLENAMEWITHCOLUMNLIST;
QUERY in QUERY_SPECIFICATION) renams INSERT-INTO;

fumction VALUES return INSERTVALUELIST STARTER;

function NULL-VALUE return NULL INSERTVALUE;

function *(-
(LEFT INSERTVALUELISTSTARTER;

RIGHT VALUE SPECIFICATION) return INSERTVALUE_LIST;

function "(-"
LEFT INSERTVALUE_LISTSTARTER;
RIGHT NULLINSERTVALUE) return INSERTVALUELIST;

function "and"
LEFT INSERTVALUELIST;
RIGHT VALUE SPECIFICATION) return INSERTVALUELIST;

function "and"
(LEFT INSERTVALUELIST;

RIGHT NULLINSERTVALUE) return INSERTVALUELIST;

For a program data type ct:

function "(-"
(LEFT INSERTVALUELISTSTARTER;

RIGHT ct) return INSERT VALUELIST;

function wand'
(LEFT INSERTVALUE LIST;

RIGHT ct) return INSERTVALUELIST;

Example

NEW-DEPLOYEE,
HIS MANAGER : EMPLOYEENAME;
HIS_SALARY : EMPLOYEESALARY;

INSERT-INTO (EMPLOYEE (NAME & SALARY & MANAGER)
VALUES <- NEW_zEPLOYEE and HIS SALARY and HIS-MANAGER);

INSERT INTO (EMPLOYEE
SELEC (*',

Database Language Ada/SQL
260

UNIASSIFIED

FROM -)NEWEMPLOYEEF1LE))

-- assume NW-PLOYEE_FILE is another database table structured identically
-- to the EPLOYEE table

-- variations:

INSERT (INTO -) EMPLOYEE (NAME & SALARY & MANAGER)
VALUES (- NEWEMPLOYEE and HISSALARY and HIS-MANAGER);

INSERT (INTO -> EMPLOYEE
SELEC ('",

FROM -) NEW E4PLOYEEFILE));

Syntax Rules

1) Both forms of the <insert statement> are equivalent.

2) The applicable <privileges> for the <table name> represented in the <table name with
optional column list> shall include INSERT.

NOTE: The "applicable <privileges>" for a <table name> are defined in 6.6, "<privilege
definition>".

3) Let T denote the table identified by the <table name> represented in the <table name with
optional column list>. T shall not be a read-only table or a table that is identified in a <from
clause> of the <query specification> or of any <subquery> contained in the <query
specification>.

4) Each <column name> in the <column list> (if any) of the <table name with optional column
list> shall identify a column of T and the same column shall not be identified more than once.
Omission of the <column list> from the <table name with optional column list> is an implicit
specification of a <column list> that identifies all columns of T in the ascending sequence of
their ordinal position within T.

5) A column identified by the <column list> of the <table name with optional column list> is an
object column.

6) Case:

a) If an <insert value list> is specified, then the number of <insert value>s in that <insert
value list> shall be equal to the number of <column name>s in the <column list>. Let
the i-th item of the <insert statement> refer to the i-th <insert value> in that <insert
value list>.

b) If a <query specification> is specified, then the degree of the table specified by that
<query specification> shall be equal to the number of <column name>s in the <column
list>. Let the i-th item of the <insert statement> refer to the i-th column of the table

Data manipulatdon language
261

UNCLASSIFIED

specified by the <query specification>.

7) If the i-th item of the <insert statement> is not the <insert value> NULL-VALUE, then the
data type of the column of table T designated by the i-th <column name> shall be the same as
the data type of the i-th item of the <insert statement>.

General les

1) A row is inserted in the following steps:

a) A candidate row is effectively created in which the value of each column is the null value.
If T is a base table, B, then the candidate row includes a null value for every column of B.
If T is a viewed table, the candidate row includes a null value for every column of the base
table, B, from which T is derived.

b) For each object column in the candidate row, the value is replaced by an insert value.

c) The candidate row is inserted in B.

2) If T is a viewed table defined by a <view definition> that specifies "WITHLCHECKOPTION",
and the <query specification> contained in the <view definition> specifies a <where clause>,
then the <search condition> of that <where clause> shall be true for the candidate row; other-
wise, the CONSTRAINT-VT.OLAION exception is raised.

3) U an <insert value list> is specified, then:

Case:

a) If the i-th <insert value> of the <insert value list> is a <value specification>, then the
value of the column of the candidate row corresponding with the i-th object column is the
value of that <value specification>.

b) If the i-th <insert value> of the <insert value list> is NULL-VALUE, then the value of
the column of the candidate row corresponding with the i-th object column is the null
value.

4) U a <query specification> is specified, let R be the result of the <query specification>. If R is
empty, then the NO..DATA exception is raised and no row is inserted. The number of candidate
rows created is equal to the cardinality of R. The insert values of one candidate row are the
values in one row of R and the values in one row of R are the insert values of one candidate row.

5) Let V denote a row of R or the sequence of values specified by the <insert value list>. The i-th
value of V is the insert value of the object column identified by the i-th <column name> in the
<table name with optional column list>.

Database Language Ada/SQL
262

UNCIASSEFIED

6) Let C denote an object column. £etv denote anoanullinsertvalueof C.

7) Case:

a) f C is of acharacter suing data type and any character of v does not belong to the subtype
of the characters in C, then:

Case:

i) If an <insert value list> is specified, then the DATA-EXCEPTION exception is
raised.

Hi) If a <query specification> is specified, then the program executing the <insert state-
mert> is erroneous.

b) If C is of a character string data type and the length of v is equal to the maximum number
of characters C can contain, then the value of C is set to v.

c) If C is of a character string data type and can contain a maximum of L characters, and the
length M of v is smaller than L, then the first M characters of C are set to v, and the last L-
M characters of C are set to the space character.

d) f C is of a character string data type and the length of v is greater than the maximum
number of characters C can contain, then:

Case:

i) If an <insert value list> is specified, then the DATA-EXCEPTION exception is
raised.

ii) If a <query specification> is specified, then the program executing the <insert state-
ment> is erroneous.

e) If C is of an integer, floating point, or enumeration data type, and v belongs to the subtype
of C, then the value of C is set to v.

f) If C is of an integer, floating point, or enumeration data type, and v does not belong to the
subtype of C, then:

Case:

i) If an <insert value list> is specified, then the DATA..EXCEFFION exception is
raised.

Data manipulation language
263

UNCLASSiFIED

ii) If a <query specification> is specified, then the program executing the <insert state-
ment> is erroneous.

Notes

1) Release I implementations do not support the NULL-VALUE <insert value>.

2) The Ada/SQL <insert statement> conforms to the ANSI SOL <insert statement>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
- SRI 3

SR1-SR5 SR2-SR6
SR6 SR7 4
GRI GRI -

GR2 GR2 5
GR3-GR6 GR3-GR6 -

GR7 GR7 6

3) The first form of the <insert statement> is that originally defined for Ada/SQL, and is provided
for upward compatibility. The second form is designed to use the same INSERT <key word> as
for <privileges>.

4) SR7.a expresses one aspect of Ada/SQL's strong typing. The length restriction of ANSI SQL
SR6.a is covered as Ada/SQL GR7.d.

5) ANSI SQL GR2 qualifies the <where clause> of the <view definition> as "not contained in a
<subquery>". A <subquery> cannot appear in a <view definition> to which GR2 applies,
however. T must be an updatable table, and it is a consequence of other rules that a <subquery>
cannot be used in the definition of an updatable table. The detection and/or reporting of check
violations is not standardized in Release 1 implementations.

6) GR7 expresses Ada/SQL's subtype checking on data inserted into a database. Release I imple-
mentations do not support and/or standardize this subtype checking. However, if all insert
operations are done using corresponding columns and program variables/valnes of the same sub-
type, then Ada's subtype checking prevents violation of Ada/SQL subtype constraints for data
inserted from a program. Release 1 implementations do support the strong type checking
expressed in SR7.

Unless the database supports subtype checking, it is possible to create data, not passing through
a program, that violate subtype constraints. This may be done with a <query specification> used
to create rows of data. For this reason, a program creating such data is considered erroneous.
Data inserted from a program, i.e., with an <insert value list> specified, can be checked by the
Ada/SQL system, so the DATAEXCEFIION exception can be raised. An implementation

Database Language Ada/SQL
264

UNCLASSIFIED

that can support database subtype checking may raise the DATA-EXCEPTION exception upon
detecting a subtype constraint violation.

7) See 5.26, <table name with optional column list>, for notes on its use in Ada/SQL syntax.

Data manipulation language
265

UNCLASSIFIED

8.8 -Copen statement>

Function

Open a cursor.

Format

<open statement> ::=
OPEN (<cursor name>);

Effective Ada Declarations

procedure OPEN (CURSOR In out CURSORNAME),

Example

CURSOR : CURSORNAME;

OPEN C CURSOR);

Syntax Rules

None.

General Rules

1) The program shall have executed a <declare cursor> whose <cursor name> is the same as the
<cursor name> of the <open statement>; otherwise, the INVALIDCURSORSTATE excep-
tion is raised.

2) Let CR denote the cursor defined by the last such <declare cursor> executed.

3) Cursor CR shall be in the closed state; otherwise, the INVALIDCURSOR.STATE exception
is raised.

4) Let S denote the <cursor specification> of cursor CR.

5) Cursor CR is opened in the following steps:

a) f S specifies a read-only table, then that table, as specified by the copy of S made when the
<declare cursor> was executed (see 8.3, GR6), is effectively created.

b) Cursor CR is placed in the open state and its position is before the first row of the table.

Notes

Database Language Ada/SQL 266

I, ,=mmm~m •• mmmmum I • I iI I 2nl6

UNCLASSIFIED

1) The Ada/SQL <open statement> conforms to the ANSI SQL <open statement>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
SR1 GR1-GR2 2

GR1-GR2 GR3-GR4 -

GR3 GR5 3

2) The expression of ANSI SQL SRI as Ada/SQL GRs is necessary because a <declare cursor> is
declarative in ANSI SQL, while being executable in Ada/SQL.

3) See also note 5, section 8.3. In Ada/SQL, the evaluation of program values used in cursors
occurs at <declare cursor> time; while occurring at <open statement> time in ANSI SQL.

Data manipulation language
267

UNCLASSIFIED

8.9 <rollback statement>

Function

Terminate the current transaction with rollback.

Format

<rollback statement> ::-
ROLLBACK-WORK;

Effective Ada Declarations

procedure ROLLBACK-WORK;

Example

ROLLBACKWORK;

Syntax Rules

None.

General Rules

1) Any changes to the database that were made by the current transaction are canceled.

2) Any cursors that were opened by the current transaction are closed.

3) The current transaction is terminated.

Notes

1) The Ada/SQL <rollback statement> conforms to the ANSI SQL <rollback statement>.

2) Release 1 implementations do not support the <rollback statement>.

Database Language Ada/SQL
268

UNCLASSi) D

8.10 <select statement>4
Function

Retrieve values from a specified row of a table.

Format

<select statement> ::-
[SELEC I SELECT-ALL I SELECT-DISTINCT SELECALL SELEC.DISTINCT]
(<select list>,
<table expression>);
<select target list>

<select target list> ::-
<select into substatement>

[<select into substatement> ...]

<select into substatement> ::-

INTO (<target specification>);

]Effective Ada Declarations

type STAR_TYPE is ('*'

procedure SELEC
(WHAT :in SELECT-LIST;
FROM In FROM CLAUSE;
WHERE In SEARCH-CONDITION -NULLSEARCHCONDITION

procedure SELEC
(WHAT in VALUE EXPRESSION;
FROM In FROMCLAUSE;
WHERE In SEARCHCONDITION :-NULL SEARCHCONDITION);

procedure SELEC
(WHAT In STARTYPE;

FROM In FROM-CLAUSE;
WHERE In SEARCHCONDITION -NULLSEARCHCONDITION);

procedure SELECTALL
(WHAT, In SELECTLIST;
FROM In FROMCLAUSE;

WHERE In SEARCHCONDITION : NULLSEARCHCONDITION);

procedure SELECT-ALL
(WHAT In VALUEEXPRESSION;
FROM In FROM CLAUSE;
WHERE In SEARCHCONDITION - NULLSEARCHCONDITION);

Data nanlpulation language
269

UNCLASSIFIED

procedure SELECTALL
WHAT in STARTYPE;
FROM In FROMCLAUSE;
WHERE in SEARCH_CONDITION -NULL SEARCH CONDITION);

procedure SELECTDISTINCT
(WHAT In SELECT-LIST;
FROM In FROM-CLAUSE;

WHERE In SEARCHCONDITION = NULLSEARCHCONDITION);

procedure SELECT-DISTINCT
WHAT In VALUE EXPRESSION;

FROM in FROMCLAUSE;
WHERE In SEARCHCONDITION : NULLSEARCHCONDITION);

procedure SELECTDISTINCT
(WHAT In STARTYPE;

FROM In FROMCLAUSE;
WHERE In SEARCH-CONDITION - NULLSEARCHCONDITION);

procedure SELECJALL

(WHAT in SELECT LIST;
FROM In FROM-CLAUSE;
WHERE in SEARCH-CONDITION - NULLSEARCHCONDITION

renusse a SELECTALL;

procedure SELEC ALL
(WHAT In VALUEEXPRESSION;
FROM in FROMCLAUSE;
WHERE In SEARCH CONDITION :-NULLSEARCHCONDITION

ren-,-s SELECTALL;

procedure SELECALL
WHAT In STAR-TYPE;
FROM In FROM-CLAUSE;
WHERE In SEARCHCONDITION -NULLSEARCHCONDITION

renums SELECTALL;

procedure SELECDISTINCT

(WHAT In SELECTLIST;
FROM In FROM_CLAUSE;
WHERE In SEARCHCONDITION :-NULL SEARCHCONDITION

reanes SELECTDISTINCT;

procedure SELECDISTINCT
(WHAT In VALUEEXPRESSION;
FROM in FROM-CLAUSE;
WHERE In SEARCHCONDITION :-NULLSEARCHCONDITION

renmnes SELECTDISTINCT;

procedure SELEC DISTINCT
(WHAT : In STARTYPE;

Database Language Ada/SQL
270

UNLASSIFIED

FROM In FROM CLAUSE;
WHERE In SEARCH-CONDITION -NULLSEARCHCONDITION

renam s SELECTDISTINCT;

For a program data type ct:

procedure SELEC
(WHAT In ct;

FROM In FROM CLAUSE;
WHERE In SEARCHCONDITION - NULLSEARCH CONDITION);

procedure SELECTALL
(WHAT in ct;

FROM in FROM-CLAUSE;

WHERE In SEARCH-CONDITION :- NULLSEARCHCONDITION);

procedure SELECT DISTINCT
(WHAT In ct;

FROM In FROM-CLAUSE;
WHERE In SEARCHCONDITION : NULLSEARCH CONDITION);

procedure SELECALL
(WHAT In ct;
FROM In FROMCLAUSE;
WHERE In SEARCH-CONDITION - NULLSEARCHCONDITION

renames SELECT-ALL;

procedure SELECDISTINCT

(WHAT In ct;
FROM in FROMCLAUSE;
WHERE in SEARCHCONDITION :-NULLSEARCHCONDITION

renams SELECT-DISTINCT;

The INTO procedures shown in section 8.6, effectively declared for <fetch into substatement>s, are
also applicable to <select into substatement>s. When one of these INTO procedures is effectively
used for a <select into substatement>, however, the final CURSOR parameter may not be specified,
according to the syntax rules.

Exmle

DES IRED-EMPLOYEE,
HIS-MANAGER EMPLOYEENAME;
HISSALARY EMPLOYEESALARY;

EMPLOYEELAST,
MANAGERLAST NATURAL;
SALARYINDICATOR,

MANAGER-INDICATOR INDICATORVARIABLE;

SELEC (SALARY & MANAGER , -- variations: SELECTALL
FROM > EMPLOYEE, -- SELECTDISTINCT
WHERE-> EQ (NAME , DESIREDEMPLOYEE)); -- SELEC ALL
INTO (HISSALARY); -- SELECDISTINCT

Dataeumanipulation language
271

ULNIASSIFIED

INTO (HIS-MANAGER , MAKAGERLAST):

SELEC (NAME G SALARY & MANAGER , -- variations: SELECTALL

FROM -) ONEEMPLOYEE_TABLE); -- SELECTDISTINCT

INTO (DESIREDEMPLOYER , EMPLOYZELAST); -- SELEC_ALL

INTO (HISSALARY , SALARY.INDICATOR); -- SELECDISTINCT

INTO (HIS-MANAGER , MANAGERLAST , MANAGER INDICATOR);

-- assume ONEEMPLOYEE TABLE is another database table structured
-- identically to the -EPLOYEE table, but containing only one row

Syntax Rules

1) Specifying SELEC-ALL is equivalent to specifying SELECT-ALL; specifying
SELEC..DISTINCT is equivalent to specifying SELECT-DISTINCT.

2) The applicable <privileges> for each <table name> contained in the <table expression> shall
include SELEC.

NOTE: The "applicable <privileges>" for a <table name> are defined in 6.6, "<privilege
definition>".

3) The <table expression> shall not include a <group by clause> or a <having clause> and shall
* not identify a grouped view.

4) The number of elements in the <select list> shall be the same as the number of elements in the
<select target list>.

5) The data type of the target designated by the <target specification> of the i-th <select into sub-
statement> shall be the same as the data type of the i-th <value expression> in the <select
list>.

General Rules

1) Let S be a <query specification> whose <select list> and <table expression> are those
specified in the <select statement> and which specifies SELECr-ALL or SELECT-;-
DISTINCT (or their equivalents) if it is specified in the <select statement>. Let R denote the
result of <query specification> S.

2) The cardinality of R shall not be greater than one; otherwise, the CARDINALTY.-
VIOLATION exception is raised. If R is empty, then the NODATA exception is raised. In
either case, the values of the targets identified by the <target specification>s of the <select into
substatement>s are undefined. The execution of a program is erroneous if it attempts to evalu-
ate such an undefined integer, floating point, or enumeration target, or if its effect depends on the
value of such an undefined character string target.

3) If R is not empty, then values in the row of R are assigned to their corresponding targets.

Database Language Ada/SQL
272

UNCLASSIFIED

4) The assignment of values to targets in the <select target list> is in an implementor-defined order.
The execution of a program is erroneous if its effect depends on this order.

5) If an error occurs during the assignment of a value to a target, then either the
DATAEXCEPTION or the CONSTRAINT...ERROR exception is raised and the values of all
targets are undefined. The execution of a program is erroneous if it attempts to evaluate such an
undefined integer, floating point, or enumeration target, or if its effect depends on the value of
such an undefined character string target. (Specific circumstances in which each exception is
raised are described below.)

6) The target identified by the <target specification> of the i-th <select into substatement> in the
<select target list> corresponds to the i-th value in the row of R.

7) Let V be an identified target and let v denote its corresponding value in the row of R.

8) Case:

a) If v is the null value, then:

Case:

i) If an indicator is specified for V, then that indicator is set to NULL-VALUE and the
values of the variables denoted by the <variable name>s of the <program variable>
and <last variable> (if any) of V are undefined. The execution of a program is
erroneous if it attempts to evaluate such an undefined integer, floating point, or
enumeration variable, or if its effect depends on the value of such an undefined char-
acter string variable.

ii) If an indicator is not specified for V, then the DATA._EXCEPTION exception is

raised.

b) If v is not the null value and V has an indicator, then that indicator is set to NOT-NULL.

9) Ifv is not the null value, then:

Case:

a) If V is of a character string data type, then:

Case:

i) If the length of v is zero, then:

1. The value of the variable denoted by the <variable name> of the <program
variable> of V is left undefined. The execution of a program is erroneous if its
effect depends on the value of such an undefined variable.

Data manipulation language
273

UNCLASSIFIED

2. Case:

a. If the index of the first character in the <program variable> of V has a
predecessor, then:

Case:

i. If that predecessor belongs to the subtype of the variable denoted
by the <variable name> of the <last variable> of V, then the
value of that variable is set to that predecessor.

ii. If that predecessor does not belong to the subtype of the variable
denoted by the <variable name> of the <last variable> of V,
then the CONSTRAINT.ERROR exception is raised.

b. If the index of the first character in the <program variable> of V does
not have a predecessor, then the DATAEXCEPTION exception is
raised.

ii) If the length of v is not zero, and is equal to or less than the length of the <program
variable> of V, then:

1. Case:

a. If all characters of v belong to the subtype of the characters of the <pro-
gram variable> of V, then successive characters of the variable denoted
by the <variable name> of the <program variable> are replaced with
successive characters of v. Characters not replaced are left undefined;
the execution of a program is erroneous if its effect depends on the value
of any of these undefined characters.

b. If any characters of v do not belong to the subtype of the characters of
the <program variable> of V, then the DATA.EXCEPTION exception
is raised.

2. Case:

a. If the index of the last character replaced, taken rclative to the index
bounds of the subtype of the <program variable> of V, belongs to the
subtype of the variable denoted by the <variable name> of the <last
variable> of V, then the value of that variable is set to that index.

b. If the index of the last character replaced, taken relative to the index
bounds of the subtype of the <program variable> of V, does not belong
to the subtype of the variable denoted by the <variable name> of the
<last variable> of V, then the CONSTRAINT.ERROR exception is

Database Language Ada/SQL
274

UNCLASSIFIED

raised.

iii) If the length of v is greater than the length of the <program variable> of V, then the
DATAEXCEPTION exception is raised.

b) If V is of an integer, floating point, or enumeration data type, then:

Case:

i) If v belongs to the subtype of the variable denoted by the <variable name> of the
<program variable> of V, then the value of that variable is set to v.

ii) If v does not belong to the subtype of the variable denoted by the <variable name>
of the <program variable> of V, then the CONSTRAINT.ERROR exception is

raised.

10) If v is not the null value and the column of R from which it is taken is a named column, then
the DATA-EXCEPTION exception is raised if v does not belong to the subtype declared for
that column.

Notes

1) There are four <select statement> procedures effectively declared for each <key word>
that may be used to introduce the statement. The procedures differ in the type of their first
parameter, based on the text of the <select statement> as follows:

SELECT.LIST - used when the <select list> contains more than one <value expression>

VALUEEXPRESSION - used when the <select list> contains only one <value expres-
sion>, which contains at least one of a <column specification>, a <set function
specification>, an <indicator specification>, or the <key word> USER

t (program type) - used when the <select list> contains only one <value expression>, which
does not contain a <column specification>, a <set function specification>, an <indicator
specification>, or the <key word> USER

STAR-TYPE - used when the <select list> consists of the single element '*'

2) The procedures effectively declared for the <select statement> do not require GROUP.BY
or HAVING parameters (unlike the similar functions effectively declared for <subquery>s
and <query specification>s) because SR3 prohibits <group by clause>s and <having
clause>s from being used in <select statement>s.

3) Release 1 implementations do not support null values. Indicators may therefore not be used
within <target specification>s. Only the effective Ada declarations for INTO procedures
not including an INDICATORVARIABLE parameter (see section 8.6) are relevant to
Release 1 implementations. As already noted, the final CURSOR-NAME parameter on
the INTO procedures is not relevant to <select statement>s.

Data manipuladon language
275

UNCLASSIFIED

4) Release 1 implementations have different exceptions for conditions covered by
DATAEXCEPTION and CONSTRAINT-ERROR. They have a separate exception,
NULL-ERROR, which is raised for a null value returned without an indicator variable
(DATA.EXCEPTION raised according to this standard). Otherwise, they do not distin-
guish between DATAEXCEPTION and CONSTR.AINTERROR as does this standard;
CONSTRAINT.ERROR is raised in all cases. Due to this standard's lack of a separate
NULL.ERROR, application programs can no longer explicitly distinguish errors that would
have raised NULL-ERROR. Enhanced error reporting is planned for later versions of
SQL, and incorporation of those features into Ada/SQL should restore this capability.

5) The Ada/SQL <select statement> conforms to the ANSI SQL <select statement>. The
correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SQL Ada/SQL See Notes
_ _ SR1 6

SRI-SR3 SR2-SR4 -

SR4 SR5 7
GR1-GR7 GR1-GR7 -

GR8 GR8 8
GR9 GR9 9

GR10 10

6) The <key word>s SELECT..ALL and SELECT-DISTINCT are those originally defined
for Ada/SQL, and are provided for upward compatibility. SELECALL and
SELEC.DISTINCT are provided to use the same SELEC keyword as for <privileges> and
because some users have expressed a preference for them. Release 1 implementations do
not recognize the new <key word>s.

7) SR5 expresses one aspect of Ada/SQL's strong typing.

8) Ada/SQL indicator variables are of an enumeration type, used only to indicate whether or
not a value is null. The condition for which ANSI SQL indicator variables serve a dual pur-
pose as flags, truncation of a retrieved character string, is an error in Ada/SQL.

9) See the general discussion of character strings in section 4.2.1. Ada/S'IL does not right pad
retrieved character strings with blanks, to be analogous to TEXTIO. It is considered an
error to rtrieve a character string value that is longer than the target variable, consistent
with Ada's constraint checking for array assignment. Ada/SQL retrievals provide subtype
checking.

10) Ada/SQL validates subtype constraints when data are placed into a database by a program,
and also validates them when data are retrieved from a database. Unless the database also
supports such constraint checking, however, it is possible to execute database operations
wherein data violating subtype constraints are created within the database, without passing

Database Language Ada/SQL
276

UNCLASSI1ID

through a program. GRIO provides for treating the retrieval of such invalid data as an error
condition. Release 1 implementations do not support this checking, although they do, of
course, perform the subtype checking of GR9, since that is a consequence of Ada seman-
tics. If values from a column are always retrieved into variables of the same subtype as the
column, then this Ada constraint checking is equivalent to that of GR1O.

Data manipulation language
277

UNCLASSIFIED

8.11 <update statement- positioned>

Function

Update a row of a table.

Format

<update statement: positioned> ::-
UPDATE (<table name>,
SET -> <set clause: positioned>
[(and <set clause: positioned> } ...],
WMHERCURRENTOF -> <cursor name>);

<set clause: positioned> ::-
<object column: positioned> <- { <value expression> I NULL-VALUE }

<object column: positioned> ::- <column name>

Effective Ada Declarations

For a table t:

type SET_CLAUSE-t Is private;

procedure UPDATE
TABLE => in TABLE_ NAMEt;
SET in SETCLAUSE.t;
WHERECURRENTOF -> in out CURSORNAME);

function *and" (LEFT , RIGHT SETCLAUSE-t) return SETCLAUSE t;

For a column of t of data type ct:

function "(
(LEFT COLUMNNAME_t_ct;
RIGHT VALUEEXPRESSION-ct) return SET CLAUSEt;

function .<-"

LEFT COLUMN NAME_t_ct;
RIGHT : ct) return SET CLAUSE_t;

function w<-"
(LEFT COLUMN_NAME-t;

RIGHT NULLINSERT VALUE) return SETCLAUSE_t;

NOTE: These effective Ada declarations, other than for the UPDATE procedure, also pertain to
8.12.

Example

Database Language Ada/SQL
278

UNCLASSIFIED

CURSOR CURSOR_NAME;

UPDATE (EMPLOYEE
SET -) SALARY (w 1.0 * SALARY

ad MANAGER <- NULL_VALUE
WHERECURRENTOF CURSOR);

UPDATE (EMPLOYEE
SET -> SALARY " 0.0
WHERE_CURRENTOF - CURSOR);

Synta Rules

1) The applicable <privileges> for the <table name> shall include UPDATE for each <object
column: positioned>.

NOTE The "applicable <privileges>" for a <table name> are defined in 6.6, "<privilege
definition>".

2) Let T denote the table identified by the <table name>.

3) A <value expression> in a <set clause: positioned> shall not include a <set function
specification>.

4) Each <column name> specified as an <object column: positioned> shall identify a column of
T. The same <object column: positioned> shall not appear more than once in an <update state-
ment: positioned>.

5) The scope of the <table name> is the entire <update statement: positioned>.

6) For each <set clause: positioned>:

Case:

a) If NULLVALUE is specified, then the column designated by the <object column: posi-
tioned> shall allow nulls.

b) If NULL-VALUE is not specified, then the data type of the column designated by the
<object column: positioned> shall be the same as the data type of the <value expres-
sion>.

General Rules

1) The program shall have executed a <declare cursor> whose <cursor name> is the same as the
<cursor name> in the <update statement: positioned>; otherwise, the
INVALIDCURSOR..STATE exception is raised.

Data manipulation language
279

UNCLASSIFIED

2) Let CR denote the cursor defined by the last such <declare cursor> executed.

3) The table designated by CR shall not be a read-only table; otherwise, the
INVALIDCURSOR..STATE exception is raised.

4) T shall be the table identified in the first <from clause> in the <cursor specification> of CR;
otherwise, the INVALID-CURSOR..STATE exception is raised.

5) Cursor CR shall be positioned on a row; otherwise, the INVALIDCURSOR.STATE exception

is raised.

6) The object row is that row from which the current row of CR is derived.

7) The object row is updated as specified by each <set clause: positioned>. A <set clause: posi-
tioned> specifies an object column and an update value of that column. The object column is
the column identified by the <object column: positioned> in the <set clause: positioned>. The
update value is the null value or the value specified by the <value expression>. If the <value
expression> contains a reference to a column of T, the reference is to the value of that column in
the object row before any value of the object row is updated.

8) The object row is updated in the following steps:

a) A candidate row is created which is a copy of the object row.

b) For each <set clause: positioned>, the value of the specified object column in the candi-
date row is replaced by the specified update value.

c) The object row is replaced by the candidate row.

9) If T is a viewed table defined by a <view definition> that specifies "WIHLCHECKOPTION",
and the <query specification> contained in the <view definition> specifies a <where clause>,
then the <search condition> of that <where clause> shall be true for the candidate row; other-
wise, the CONSTRAINT-VIOLATION exception is raised.

10) Let C denote an object column. Let v denote a nonnull update value of C.

11) Case:

a) If C is of a character string data type and any character of v does not belong to the subtype
of the characters in C, then the program executing the <update statement: positioned> is
erroneous.

b) If C is of a character string data type and the length of v is equal to the maximum number
of characters C can contain, then the value of C is set to v.

Database Language Ada/SQL
280

UNCLASSIMD

c) If C is of a character string data type and can contain a maximum of L characters, and the
length M of v is smaller than L, then the first M characters of C are set to v, and the last L-
M characters of C are set to the space character.

d) If C is of a character string data type and the length of v is greater than the maximum
number of characters C can contain, then the program executing the <update statement:
positioned> is erroneous.

e) If C is of an integer, floating point, or enumeration data type, and v belongs to the subtype
of C, then the value of C is set to v.

f) If C is of an integer, floating point, or enumeration data type, and v does not belong to the
subtype of C, then the program executing the <update statement: positioned> is errone-
ous.

Notes

1) The Ada/SQL <update statement: positioned> conforms to the ANSI SQL <update statement:
positioned>. The correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

ANSI SOL Ada/SQL See Notes
SRI SRI -

SR2-SR3 GRI-GR3 2
SR4 SR2,GR4 2

SRS-SR7 SR3-SR5 -

SR8 SR6 3
|GR1-GR4 GRS-GR8 -

GR5 GR9 4
GR6 GRIO -
GR7 GRl1 5

2) The expression of ANSI SOL SR2-SR4 as Ada/SQL GRs is necessary because a <declare cur-
sor> is declarative in ANSI SQL, while being executable in Ada/SQL.

3) SR6 expresses one aspect of Ada/SQL's strong typing. The length restriction of ANSI SOL

SR8.b is covered as Ada/SQL GRU.d.

4) ANSI SOL GR5 qualifies the <where clause> of the <view definition> as "not contained in a
<subquery>". A <subquery> cannot appear in a <view definition> to which GR5 applies,
however. The table designated by CR must be an updatable table, and it is a consequence of
other rules that a <subquery> cannot be used in the definition of an updatable table. The detec-
tion and/or reporting of check violations is not standardized in Release I implementations.

Data manipulation lama
281

UNCLASSIFIED

5) Unless the database supports subtype checking, it is possible to UPDATE database values to
values not belonging to the subtypes declared for their columns; requiring checking for this con-
dition could have an unacceptable performance impact on an Ada/SQL system. For this reason,
GRI1 states that programs creating bogus data are erroneous. An implemention that can sup-
port database subtype checking may raise the DATA_EXCEFIION exception upon detecting a
subtype constraint violation.

6) Release 1 implementations do not support the <update statement: positioned>.k

Database Language Ada/SOL
282

UNCLASSIFIED

8.12 <update statement: searched>

Function

Update rows of a table.

Format

<update statement: searched> ::-
UPDATE (<table name>,
SET -> <set clause: searched>
[{nd <set clause: searched>}...j]

WHERE -> <search condition> 1);
<set clause: searched> ::-

<object column: searched> <- { <value expression> NULL-VALUE }

<object column: searched> ::- <column name>

Effective Ads Declarations

For a table t:

procedure UPDATE
C TABLE In TABLE NAME t;
SET In SETCLAUSE t;
WHERE Iin SEARCH-CONDITION :-NULLSEARCHCONDITION);

See also all declarations, other than for the UPDATE procedure, given in 8.11.

Fample

TERMINATED -EPLOYEE : E4PLOYEE NAME;

UPDATE E MIPLOYEE
SET -) SALARY <- 0.0

and MANAGER <- NULL_VALUE
WHERE -) EQ (NAME , TERMINATED DMPLOYEE));

UPDATE DMPLOYEE ,
SET - SALARY <- 1.05 * SALARY)g -- cost of living raise

Syntu Rules

1) The applicable <privileges> for the <table name> shall include UPDATE for each <object
column: searched>.

NOTs The "applicable <privileges>" for a <table name> are defined in 6.6, "<privilege
definition>".

C ~ ~~ ~~~~283 Dt uiuaiuI~u

UNCLASSIWUED

2) Let T denote the table identified by the <table name>. T shall not be a read-only table or a table
that is identified in a <from clause> of any <subquery> that is contained in the <search condi-
tion>.

3) A <value expression> in a <set clause: searched> shall not include a <set function
specification>.

4) Each <column name> specified as an <object column: searched> shall identify a column of T.
The same <object column: searched> shall not appear more than once in an <update state-
ment: searched>.

5) The scope of the <table name> is the entire <update statement: searched>.

6) For each <set clause: searched>:

Case:

a) If NULL-VALUE is specified, then the column designated by the <object column:
searched> shall allow nulls.

b) If NULLVALUE is not specified, then the data type of the column designated by the

<object column: searched> shall be the same as the data type of the <value expression>.

General Rules

1) Case:

a) If a <search condition> is not specified, then all rows of T are the object rows.

b) If a <search coudition> is specified, then it is applied to each row of T with the <table
name> bound to that row, and the object rows are those rows for which the result of the
<search condition> is true. Each <subquery> in the <search condition> is effectively
executed for each row of T and the results used in the application of the <search condi-
tion> to the given row of T. If any executed <mbquery> contains an outer reference to a
column of T, the reference is to the value of that column in the given row of T.

NOTE "Outer reference* Is defined in 5.7, "<column specification>'.

2) Each object row is updated as specified by each <set clause: searched>. A <set clause:
searched> specifies an object column and an update value of that column. The object column is
the column Identified by the <object column: searched>. The update value is the null value or
the value specified by the <value expression>. If the <value expression> contains a reference
to a column of T, then the reference is to the value of that column in the object row before any
value of the object row is updated. If there are no object rows to be updated, then the
NO-DATA exception is raised.

Database Language Ada/SOL
284

UNCLASSIFIED

3) An object row is updated in the following steps:

a) A candidate row Is created which is a copy of the object row.

b) For each <set clause: searched>, the value of the specified object column in the candidate
row is replaced by the specified update value.

c) The object row is replaced by the candidate row.

4) If T is a viewed table defined by a <view definition> that specifies "WITHCHECKOPTION",
and the <query specification> contained in the <view definition> specifies a <where clause>,
then the <search condition> of that <where clause> shall be true for the candidate row; other-
wise, the CONSTRAINTVIOLATION exception is raised.

5) Let C denote an object column. Let v denote a nonnull update value of C.

6) Case:

a) H C is of a character string data type and any character of v does not belong to the subtype
of the characters in C, then the program executing the <update statement: searched> is
erroneous.

b) U C is of a character string data type and the length of v is equal to the maximum number
of characters C can contain, then the value of C is set to v.

c) If C is of a character string data type and can contain a maximum of L characters, and the
length M of v is smaller than L, then the first M characters of C are set to v, and the last L-
M characters of C are set to the space character.

d) If C is of a character string data type and the length of v is greater than the maximum
number of characters C can contain, then the program executing the <update statement:
searched> is erroneous.

e) If C is of an integer, floating point, or enumeration data type, and v belongs to the subtype
of C, then the value of C is set to v.

f) If C is of an integer, floating point, or enumeration data type, and v does not belong to the

subtype of C, then the program executing the <update statement: searched> is erroneous.

Notes

1) Release 1 implementations do not support NULL-VALUE updates.

2) The Ada/SQL <update statement: searched> conforms to the ANSI SQL <update statement:
searched>. The correspondence between Ada/SQL rules and ANSI SQL rules is as follows:

Data maniptlaton language
285

PV

UNCLASSIFIED

ANSI SOL Ada/SOL See Notes
SR1-SR5 SR1-SR5 -SR6 SR6 3
GRI-G113 GR1-40R3 -

GR4 GR4 4
GR5 GR5 -

GR6 GR6 5

3) SR6 expresses one aspect of Ada/SQL's strong typing. The length restriction of ANSI SQL
SR6.b is covered as Ada/SQL GR6.d.

4) ANSI SQL GR4 qualifies the <where clause> of the <view definition> as "not contained in a
<subquery>". A <subquery> cannot appear in a <view definition> to which GR4 applies,
however. T must be an updatable table, and it is a consequence of other rules that a <subquery>
cannot be used in the definition of an updatable table. The detection and/or reporting of check
violations is not standardized in Release 1 implementations.

5) Unless the database supports subtype checking, it is possible to UPDATE database values to
values not belonging to the subtypes declared for their columns; requiring checking for this con-
dition could have an unacceptable performance impact on an Ada/SQL system. For this reason,
GR6 states that programs creating bogus data are erroneous. An implementation that can sup-
port database subtype checking may raise the DATA-EXCEPTION exception upon detecting a
subtype constraint violation.

Database Language Ada/SQL
286

UNCLASSEFIED

9. Index

References are to section number. Bold type indicates defining reference; italics indicate reference in

Example only.

"A-

a (<authorization identifier> function) - 5.4, 5.7, 5.20
<action> - 4.15, 6.6
Ada base type -4.2, 55.3
<Ada parent unit name> - 7.2
<Ada reserved word> - S.3, 7.2
ADA-SQL (nested package) - 3.5, 5.2, 5.6, 5.7, 5.9, 6.1.2, 6.1.4
<Ada/SQL compilation unit> - 5.3, 5.4, 5.20, 6.1.4, 7.1
Ada/SQL definition package - 6.1.3, 6.1.4, 7.2, 7.4
<Ada/SQL DML unit> - 5.2, 6.1.4, 6.6, 7.1, 7.2
<Ada/SQL DML unit header> - 7.2
<Ada/SQL DML unit text> - 7.2
<Ada/SQL DML unit trailer> - 7.2
<Ada/SQL embedded text> - 7.2
<Ada/SQL reserved word> -5.3
<Ada/SQL statement name> - 5.3,7.2
<Ada type conversion> - 5.5.3, 5.5.6, 5.6,5.9
<Ada type qualification> - 5.2, 5.5.4, 5.6, 5.9
..ALL (suffix used in <key word>) - 5.8
<all> -S.16
<all set function> - 5.8,5.9
ALL..PRIVILEGES -6.6
ALLPRIVILEGES-TYPE -6.6
ALLL - 5.16
ampersand ("&") -5.6,5.7,5.19, 5.20, 5.22, 5.25, 5.26,6.1.3, 6.4, 6.5, 6.6, 8.3
and -5.6,5.12, 5.25,5.26,8.7, 8.11
AND - 5.12, 5.18,5.20, &3
AND..c (typed by type) - 5.12
anonymous (data type name) -5.6,6.1.5
ANY- 5.13, 5.16
applicable <privileges> -5.24, 5.25, 6.6, 8.4, 8.5, 8.7, 8.10, 8.11, 8.12
<approximate numeric type> - 5.5
argument or argument source - 5.8, 5.23, 5.24, 5.25
AS - 6.5
ASC -8.3
ASCII - 5.11
a..LCORRELATION (generic package by table and <authorization identifier>) - 5.3,7.4
a..LCORRELATION.NAME (generic package by table and <authorization identifier>) - 5.7,5.20,7.4
<authorization identifier> - 4.6, 4.15, 5.3, .4, 5.6,5.7, 5.20,5.26,6.1, 6.1.1,6.1.2,6.2,6.4, 6.5,
6.6, 7.1,7.3, 7.4
AUTHORIZATION_/DENTIFIER - 3.5, 5.4, 6.1, 6.1.1
AUTHORIZATIONIDENUIFIERa (typed by authorization identifier)- S.4, 5.26
ALrTHORIZATAION.IDENTIFIER..ST - 6.6
<authorization package> - 5.4, 6.1, 6.1.1, 6.1.2, 6.1.4, 7.1

Index
287

UNCLASSIFIED

AVG - 5.8,5.11,5.13,5.19,5.22,5.23,5.24
AVG-ALL -5.8
AVG-DISTINCT- 5.

-B.

<base> -5.2
base table - 4.4, 4.12, 5.4, 6.2, 6.3, 6.4, 6.6, 8.7
base type (see also data type, subtype) - 4.2, 5.5.3, 5.6, 5.8, 5.9
<based integer> -5.2
belong (to a subtype) -4.2
BETWEEN - 5.12,5.18
<between predicate> - 5.9, 5.10, 5.12
BOOLEAN (STANDARD.BOOLEAN) - 6.1.5
boolean (type) - 5.12, 5.13
<boolean factor> - 5.12, 5.14, 5.18
<boolean primary> - 5.1a
BOSS.NAME - 3., 5.7

-C.

c (column name function) - .4, 5.7
cardinality- 4.1
CARDINALITYVIOLAIION -3.3,5.11,8.10
CHARACTER (STANDARD.CHARACTER) -5.5,5.5.1,5.5.5,6.1.5
character (type) - 4.2.3,5.5.1, .5.4
<character> - 5.1, 5.2,5.3,5.5,5.11,5.14
<character literal> - 5.2, 5.3, 5.5.4
<character representation> - 5.2
character string (type) - 4.2, 4.2.1, 4.2.4, 4.3, 5.2, 5.5, 5.5.1, 5.5.4,
5.-.5,5.5.6,5.6,5.7,5.8,5.9,5.11,5.14, 5.25,6.1.5, 8.6, 8.7, 8.10,8.11, 8.12
<character string literal> - 5.2, 5.3
CLOSE -5.3,7.2, 8.1
<close statement> -4.12, 7.3, 8., 8.1
column - 4.3
<column definition> - 6.2, 6.3, 6.4
<column list> - 5.26,6.5, 8.7
COLUMNLIST-t (typed by table) - .2, 6.4, 6.6
<column name> - 5.4,5.7,5.25,5.26,6.3,6.4,6.5,6.6, 8.7, 8.11, 8.12
COLUMNNAMEt (typed by table) - .4, 5.26,6.4,6.6,8.11
COLUMN..-NAM&.Lct (typed by table & type) - 5.4, 8.11
<column number> - 8.3
COLUMN-NUMIBER -8.3
<column specification> - 5.6, 5.7, 5.8, 5.9, 5.11, 5.12, 5.13, 5.14, 5.15,
5.16,5.18,5.21,5.22,5.23,5.24,5.25,8.3,8.5,8.10,8.12
COLUMN-SPECIFICATION- 5.7, 5.8, 5.15, 8.3
COLUMN-SPECIFICATIONct (typed by type) -5.7,5.8,5.14
COLUMN-SPECIFICAON-ENUMERATION - 5.7,5.8
COLUMNSPECWICATON.ENUMERAnTONJct (typed by type) -5.7,5.8
COLUMNSPECIFICATIONFLOATING - 5.7,5.8
COLUMN-SPECIFICATIONINTEGER -5.7,5.8
COLUMN-SPECIFICATIONSTRING - 5.7,5.8

Database Language Ada/SQL
288

UNCLASSIFIED

<column specification type conversion> - 5.7
<comment> - 5.3
<comment character> - 5.3
commit - 8.2
<commit statement> - 4.12, 4.16, 73, 8., 8.2
COMMITWORK - 5.3,.2
<comparison predicate> - 4.2.1, 5.8, 5.9, 5.10, 5.11, 5.16, 5.24, 8.3
component subtype - 5.5.1,5.5.5,6.1.5
<component subtype indication> - 5.5.1,6.1.5
constrained (character string) - 4.2.1, 5.2, 5.5.5, 5.6, 5.7, 5.9
<constrained character string definition> - 5.5.1,6.1.5
constraint - 4.2
<constraint> - 5.5.1, 5.5.5, 6.1.5, 6.1.6
CONSTRAINT..ERROR - 3.3,5.2,5.5.5,5.6,6.1.7, 8.6,8.10
CONSTRAINTVIOLATION - 6.3, 6.4, 6.5, 8.7, 8.11, 8.12
CONSTRAINTS - 6.1.3,6.3,6.4
contain (production symbol) - 32
<context clause> - 5.7, 6.1.2, 6.1.3, 6.1.4, 7.2, 7.4
CONVERT-TO- 5.5.3, 5.5.6, 5.6, 5.7, 5.8, 5.9, 5.25, 8.3
<correlation name> - 4.8, 5.4, 5.7, 5.20, 7.1, 7.4
<correlation name declaration> - 5.3,5.4,6.1.4,7.4
COUNT - 5.3, 5.8,5.9,5.22
COUNTALL - 5.3, 5.8
COUNT-DISTINCT- 5.7, S.8
CREATE_.-VIEW - 6.1, 6.1.3,6.5
ct (function named same as program type) - 5.6, 5.7, 5.9
ct (program type parameter) -5.6, 5.9, 5.11, 5.12, 5.13, 5.14, 5.16, 5.24, 5.25, 8.6, 8.7, 8.10, 8.11
cursor- 4.12, 5.4, 8.1, 8.2, 8.3, 8.4, 8.6, 8.8, 8.9, 8.11
CURSOR-FOR - 5.6,5.7, 5.11,5.12,5.13,5.14,5.15,5.16,5.17,5.18,5.19, 5.20,5.21,5.22,
5.23,5.24,5.25, 7.2,8.3, &6
<cursor name> - 4.12, $.4, 8., 8.1, 8.3,8.4,8.6,8.8, 8.11
CURSOR.NAME - SA, 5.6,5.7,5.11,5.12,5.13,5.14,5.15,5.16,5.17,5.18,5.19, 5.20,5.21,
5.22,5.23,.5.24,
5.25, 7.2, 7.4,8.1, 8.3,8.4,8.6, 8.8,8.10, 8.11
<cursor specification> - 8.1,8.3,8.4,8.6, 8.8, 8.11

D-

DATAEXCEPTION - 3.3, 4.5, 5.6, 5.7, 5.8, 5.9, 5.14, 8.6, 8.7, 8.10, 8.11, 8.12
data type (see also base type, subtype) - 4.2, 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.3, 4.5, 4.8, 4.10.2, 5.2, 5.4,
5.5, 5.5.1, 5.5.3, 5.5.4,5.5.5, 5..6,5.6,5.7,5.8,5.9,5.11,5.12,5.13,5.14,5.16,5.24,5.25,
6.1.2,6.1.5,6.1.6,6.1.7,6.2,6.5, 7.1,8.6,8.7, 8.10,8.11, 8.12
<data type> - .5, 6.1.5
DATABASE - 5.4, 5.5.1, 5.5.2, 5.5.3, 6.1.5, 5.7, 5.8,5.9
<database identifier> - 5.3, 5.4, 7.3, 7.4
DATABASE.DOUBLEPRECISION - 6.1.5
DATABASE.DOUBLEPRECISIONSAFELARGE -5.5.3
DATABASE.INT-5.7,5.8,5.9,6.1.5
DATAJBASE.MAX-CHARACTES - 5.$.1
DATABASE.MAX.DIGITS -5..3
DATABASE.MAXJNT - 5.5.2
DATABASE.MIN/NT - 5.5.2

Index

289

6 -' mmllm ia 11 iiI

UNCLASSIFIED

DATABASE.REAL - 6.1.5,6.1.6
DATABASE.SMALLINT- 6.1.5,6.1.6
DATABASE.USER..AUTHORAnIONJDENTIFIER - 5.4,5.6
DECLAR - 5.6, 5.7,5.11,5.12,5.13,5.14, 5.15, 5.16,5.17,
5.18,5.19,5.20,5.21,5.22,5.23,5.24,5.25, 7.2,8.1,8.3. 8.6
<declare cursor> -4.12, 73,8., 8.1,8.3,8.4, 8.6,8.8, 8.11
degree (of a table) - 4.4, 8.3, 8.6, 8.7
DELETE -4.15,5.3,6.6,7.2,8.4, .5
DELETE.ROM - 8.4, 8.5
<delete statement: positioned> - 4.12,4.13,7.3, 8., 8.4
<delete statement: searched> - 4.13,5.7, 7.3, 8., 8.5
<delimiter token> - 5.3
derived table - 4.4
derived type - 4.2.3, 4.2.4, 5.6
<derived type definition> - 6.1.5
DESC - 8.3
description (of a column or a table) - 4.3, 4.4, 5.19, 5.20, 5.21, 5.22, 5.23, 6.2, 6.3, 6.5, 8.3
<digit> - 5.1, 5.2, 5.3
DIRECTO - 5.3, 5.8
directly contained (in a <search condition>) - 5.18, 5.21, 5.23
DISABLED - 6.5, 6.6
<discrete range> - 5.5.1
<discrete subtype indication> - 5.5.1
_DISTINCT (suffix used in <key word>) -5.8, 5.11, 5.24, .25, 8.10
<distinct set function> - 5.7, 5.8, 5.9
divide (/"1) - 5.6, 5.9
DOUBLE.PRECISION - 6.1.5
DOUBLE.PRECISION-SAFELARGE -5.5.3

-E-

effectively - 3.3
EMPLOYEE - 3.5, 5.6,5.7,5.8,5.9,5.11,5.12,5.13,5.14,5.15,
5.16,5.17,5.18,5.19,5.20,5.21,5.22,5.23,5.24,5.25,.5.26,
6.1.3,6.4,6.5,6.6, 7.2, &3, 8.4, &5, 86, &7, &10, &11, &12
EMPLOYE&_CORRELATION.NAME -5.7,5.11,5.16,5.17, 5.20, 7.4,8.3
EMPLOYEE&NAME -3.5,5.6,5.13,5.14,5.18, 5.26,6.1.6,
6.2,6.5, 7.4, 8.6,
&7, &10, &12
EMPLOYE.NAMENOT_.NUL-UNIQUE - 3.5, 6.2, 6.3
EMPLOYEELSALARY- 3.5,5.6,5.8,5.9,5.11,5.26, 6.2,6.3,7.4, &6, 8.7, 8.10
ENABLED - 6.5, 6.6
enumeration (type) - 4.2, 4.2.3,4.2.4,4.3,5.2,5.5,5.5.4,5.5.5, 5.5.6,
5.6,5.7,5.8,5.9,5.11,6.1.5,8.6,8.7,8.10,8.11,8.12
enumeration literal - 4.2.3,4.3,5.5.4,5.5.5,5.6,5.7,5.9
<enumeration literal> - 5.2,5.6,5.9
<enumeration literal specifcation> - 5.&4,6.1.5
<enumeration type> - 5.2, 5.5, 5.5.4,6.1.5
EQ- 5.7,5.11,5.13, 5.16,5.17,5.18,5.20, &3, 8.10
<equality operator> - 5.11,5.16
ESCAPE - 5.14
<escape character> - 5.14

Database Language Ada/SQL
290

UNCIASSUMME

<exact numeric type> - 5.5
EXAMPLE - 3., 5.26
EXAMPLJLAUTHORIZATION -3.5,6.1.4
EXAMPLE.SDL-3.S, 7.2, 7.4
EXAMPLETYPES -3J, 5.6,5.7,5.9,6.1.4, 7.4
EXAMPLETYPES.ADASQL - 3.5,6.1.4,7.4
EXAMPLE.TYPES.ADA.SOL.BOSSNAME - 3., 5.7
EXAMPLE-TYPES.ADA...SOL.HOURLYWAGE- 3.J,5.9
EXISTS -5.17
<exists predicate> - 5.9,5.10,5.17,5.24
EXrrDATABASE - 7.3
<exit database statement> - 4.16,7.3
expanded name - 5.7, 5.9
<exponent> - 5.2
<extended digit> -5.2

.F.

<factor> - 5.9
FETCH - 5.6,8.6
<fetch into substatement> - 8.6, 8.10
<fetch statement> - 4.12,5.6, 7.3,8., 8.6
<fetch target list> - L6
fit-named subtype - 4.2,5.6
FLOAX (STANDARD.FLOAT) - 5.6, 5.9,6.1.5
floating point (type) -4.2, 4.2.2,4.2.4,4.3, 5.2,5.5,5.5.3,5.5.5,55.6,
5.6,5.7,5.8,5.9,5.11,5.25, 6.1.5,8.6,8.7,8.10,8.11,8.12
<floating accuracy definition> - SJ.3,5.5.5
<floating point constraint> - 5.S.3,5.55,6.1.5
<floating point literal> - 5.2, 6.1.7
<floating point type> - 5.5, S.3,5.5.6,6.1.5
<format efector> - 5.3
FROM - 5.7,5.8,5.9,5.11,5.12,5.13,5.14,5.15,5.16,5.17,5.18,5.19,
5.20.,5.21.5.22,5.23,5.24,5.25,6.5, 7.2, 8.3, 8.4, 8., 8.6, 8.7, 8.10
<from clause> - 5.4, 5.7,5.19, 5.20,5.21, 5.22, 5.23, 5.25,6.5,6.6, 8.3, 8.4, 8.5, 8.7, 8.11, 8.12
FROMLCLAUSE - 5.4, 5.20,5.24,5.25,8.10
<full type declaration> - 5.5.3, 6.1.5
<function header> - 7.2

.G.

<global variable package> - 3.5, 4.8,5.20,6.1.4,7.1,7.4
GRANT - 6.1.35,6.6

<grant column list> - 6.6
grantable (privileges) - 6.6
<grantee> - 6.6
greater than (">") -5.7, 5.II, 5.13, 5.16,5.19,5.20,5.21,,5.22, 5.23,5.24, 8.3, &.5
greater than or equal (">-") - 5.11, 5.12, s.16
GROUP-BY - 5.11, 5.13,5.19, 5.22,5.23,5.24, 5.25,8.10
<group by clause> - 4.4,5.7,5.19, 5.22,5.23,5.24, 5.25,6.5, 8.10
GROUP..BYCLAUSE - 5.7,5.22,5.24,5.25
grouped table - 4.4,5.8,5.18,5.19,5.22,5.23,5.24,5.25

Index
291

UNCLASSIFIED

grouped view -4.4,5.19,5.20,5.24,5.25, 6.5, 8.10
grouping column - 5.22, 5.23, 5.24, 5.25

-H.

HAVING - 5.13,5.19, 5.22, 5.23, 5.24, 5.25, 8.10
<having clause> - 5.8, 5.19, 5.21, 5.23,5.24, 5.25, 6.5, 8.10
<horizontal tabulation> - 5.3
HOURLY-WAGE (EXAMPLETYPES.ADASQL.HOURLYWAGE) - 3.5,5.6,5.9
HOURLYWAGE.FORCOMPUTATIONS
(EXAMPE S.ADA ..S(L.HOURLYWAGE.FOR.COMPUTAIONS) 3.5,6.1.6
hyphen (5-) - 5.26 (see also minus)

-I

IDENTIFIER - 3.5, 5.4,6.1,6.1.1,6.1.2
<identifier> - 5.3,6.1.4
immediately contain (production symbol) - 3.2
<in predicate> -5.9,5.10,5.13,5.24
<in value list> -5.6,5.13
IN.VALUELISTct (typed by type) - 5.13
<index constraint> - 5.5.1,5.5.5,5.5.6,6.1.5,6.3, 7.4
index subtype - 5.5.1,5.5.5,5.5.6,6.1.5
<index subtype definition> - 5.5.1,6.1.5
indicator - 4.10.2, 5.6, 8.6, 8.10
INDICATOR- 5.6, 5.9,5.11,5.12,5.13,5.25
<indicator specification> - 5.5.3,5.5.6,6.1.7, 5.6,5.9, 5.11,5.12, 5.13,5.14,5.16,5.24, 5.25, 8.10
<indicator value> - 4.2, 4.10.2, 5.6
<indicator variable> - 4.2, 4.10.2, 5.6, 7.4
INDICATOR..VARIABLE - 4.10.2, 5.6,5.9, 8.6, 8.10
innermost package - 5.2, 6.1.4
INSERT- 4.15, 6.6, 8.7
INSERT.INTO - 5.6,5.25,5.26,8.7
<insert column list> - 5.26
<insert statement> -4.13, 56, 5.26, 6.5, 7.3, 8., 8.7
<insert value> - 5.6,8.7
<insert value list> - 5.6,8.7
INSERTVALUE&LIST - 8.7
INSERTVALUFLSTSTARTER - 8.7
INT (DATABASE.IT) - 5.7,5.8,5.9,6.1.5
<integer> -5.2,8.3
integer (type) -4.2, 4.2.2,4.2.4,4.3,5.2, 5.5,5.5.1, 5.5.2, 5.5.3,5.5.5,
5.5.6,5.6,5.7,5.8,5.9,5.11,6.1.5, 8.3, 8.6, 8.7,8.10, 8.11, 8.12
INTEGER (STANDARD.INTEGER) - 5.5.6, 5.6,5.9,6.1.5
<integer literal> -5.2, 5.5.6,6.1.7
<integer type> - 5.5,5.5.2,5.5.6,6.1.5
INTO -5.6,5.8,5.9, 8.6,8.7, 8.10
INVALIDCURSORSTATE - 3.3,8.1, 8.3, 8.4, 8.6,8.8, 8.11
INVALID.CURSORSTATE.ERROR - 3.3
INVALID.DATABASE.STATE - 7.3
IS.IN- 5.13,5.24
ISNOTNULL - 5.15, 6.1, 6.1.3

Database Language Ada/SQL
292

L

UNCLASSIFIED

IS-14ULL - 5.15

<keyword> - 5.3,5.4, 5.6,5.9,5.11, 5.12,5.13,5.14,5.16, 5.19,5.20,
5.21,5.22,5.23,5.24,5.25, 8.4, 8.5,8.7,8.10

-L-

<last variable> - 4.2.1, 5.6, 8.6, 8.10
less than ("<") - 5.7, 5.9, 5.11, 5.16
less than or equal ("<-") - 5.6, 5.11,5.12, 5.16,5.26, 8.7, 8.11
<letter> -5.1,5.2, 5.3
<letter or digit> - 5.3
library package - 5.2, 5.6, 5.7, 5.9, 6.1.4
<library package name> - 5.2, 5.4, 5.6, 5.7, 5.9, 6.1.2, 6.1.3, 6.1.4, 7.2, 7.4
LIKE -5.7, 5.14
<like predicate> - 5.6, 5.7, 5.10, 5.14
<literal> - 4.2, 5.2, 5.6, 6.1.7
<local variable package> - 3.5, 4.8, 5.20, 6.1.4, 7.2, 7.4
<lower case letter> -5.1

-M.

MANAGER - 3.5, 5.6,5.7,5.8,5.11, 5.13,5.15,5.16,5.17,5.18,5.19,5.20,
5.22,5.23,5.25,5.26, 6.1.3, 6.4, 6.5, 6.6, 8.3, 8.6, 8.7, 8.10, 8.11, 8.12
MANAGERS - 3.5,5.24
MAX -5.8
MAX-ALL -5.8
MAX-CHARACTERS - 5.5.1
MAXDIGrTS - 5.5.3
MAX-DISTINCT - 5.8
MAX.JNT - 5.5.2
MIN - 5.8
MIN..ALL- 5.8
MIN.DISTINCT - 5.8
MININT - 5.5.2
minus ("-") - 5.2, 5.6, 5.9 (see also hyphen)
<module> - 5.4, 5.6, 6.6
<module name> - 5.4
multi-set - 4.1, 5.8, 5.20, 5.24
multiply (*") -5.6, 5.9

-N-

NAME - 3.5, 5.6, 5.7,5.14, 5.16,5.17, 5.20, 5.24, 5.25, 5.26, 6.1.3, 6.4, 6.5, 6.6, 8.3, 8.6, &7, 8. 10,8.12
named (column of a table) (see also unnamed column) - 4.3, 5.25, 8.3, 8.6,8. 10
<named number> -0.2, 5.2, 5.4, 5.5.1, 5.5.2, 5.5.3, 5.5.6, 5.6, 5.9, 6.1.2, 6.1.5, 6.1.6, 6.1.7, 6.2, 7.1
<named number list> - 6.1.7
<named number name> - 5.4
named table -4.3, 4.4
NATURAL (STANDARD.NATURAL) -5.6,6.1.5, 7.4,8.6,8.10

Index
293

UNCLASSIFIED

NE -5.11, 5.16, 6.5
NEWEMPLOYEEFILE - 3.5, 5.25, 8.7
<newline> - 5.3
NO-DATA - 3.3, 8.5, 8.6, 8.7, 8.10, 8.12
<non Ada/SQL library unit name> - 5.4,6.1.4
<non Ada/SQL package name> - 5.2, 5.4, 6.1.4
<nondelimiter token> - 5.3
<nonquote character> - 5.2
NOT - 5.12, 5.13, 5.14, 5.15, 5.18
NOT-FOUND-ERROR-3.3
NOT-IN - 5.13,5.22,5.23
NOT-NULL - 4.10.2, 5.6,5.9,8.6,8.10
_NOT.NULL (subtype suffix) - 4.5, 6.1.5,6.1.6,6.3
..NOTNULLUNIQUE (subtype suffix) - 4.5,6.1.5,6.1.6,6.3
null character string - 5.2, 5.6
NULLCURSORNAME - 5.4,8.6
NULL..ERROR - 3.3, 8.6,8.10
NULLGROUPBYCLAUSE - 5.22,5.24,5.25
NULLJNSERTVALUE-8.7, 8.11
<null predicate> - 5.7, 5.10, 5.15
NULLSEARCHCONDMION - 5.18,5.24,5.25,8.5,8.10,8.12
NULLSORTSPECIFICATION - 8.3
null value - 4.2, 4.3,4.5,4.10.2,5.2, 5.5.1,5.6,5.7,5.8,5.9,5.14, 5.15,5.18,5.25, 8.3, 8.6, 8.7, 8.10, 8.11, 8.12
NULLVALUE - 4.10.2,5.6,5.11,8.6, 8.7, 8.10,8.11,8.12
<number declaration> - 6.1.2,6.1.3, 6.1.7
NUMERIC.ERROR - 5.6
<numeric literal> - 5.2, 5.3, 5.9

-0.

<object column: positioned> - 8.11
<object column: searched> - 8.12
ON - 6.6
ONE-EMPLOYEE-TABLE - 3.5,8.10
OPEN - 5.3, 7.2,8.1, 8.8
OPEN-DATABASE - 7.3
<open database statement> - 7.3
<open statement> -4.12, 7.3, 8., 8.3, 8.8
OPTION.STATE - 6.5, 6.6

* or - 5.13
OR - 5.18
ORDER-BY- 5.11, 8.3
<order by clause> - 4.12, 5.3
<ordering operator> -5.11, 5.16
<out variable> - 4.2.1, 5.6
outer reference -5.7, 5.8, 5.21, 5.23, 8.5, 8.12

.1'.

p (package name) - 5.6, 5.7, 5.9
<package header> - 7.2
<package identifier> - 5.4,6.1,6.1.1,6.1.2,6.1.3, 7.4

Database Language Ada/SQL
294

7A-,

UNCLASSIFIE

<package name> - 5.2,5.4,6.1.2,6.13,6.1.4,7.2,7.4
<parameter name> - 5.4, 8.3
<parameter specification> - 5.6
parent data type- 4.L4
<password> - 7.3
<pattern> -5.14
persistent object - 3.3, 4.6
plus ("+") -5.6, 5.9
position number - 5.5.4
POSIVE - 5.5.1, 5.5.5, 6.1.5
predefined environment - 4.8, 5.2, 5.3, 5.6, 5.7, 5.9, 6.1.4
<predicate> - 5.10, 5.18, 5.24
preprocessed system- 3.4
<primary> - .9
privilege - 4.15, 6.1.3, 6.6
<privilege definition> -4.6, 4.15, 5.24, 5.25, 6.1.3, 6.6, 8.4, 8.5, 8.7, 8.10, 8.11, 8.12
<privileges> - 5.24, 5.25, 6.6, 7.1, 8.4, 8.5, 8.7, 8.10, 8.11, 8.12
PRIVILEGES.T (typed by table) - 6.6
<procedure header> - 7.2
<procedure name> - 5.4
<program identifier> -5.2, 53, 5.4,6.1.5,6.1.7, 7.2
<program object name> - 4, 5.5.3, 5.5.6, 5.6, 5.9, 8.3
program type (used as a parameter) - 5.6, 5.7, 5.9, 5.11, 5.12, 5.13, 5.14, 5.16, 5.24, 5.25, 8.6, 8.7, 8.10, 8.11
<program variat.le> - 5.6, 5.8, 5.9, 8.6, 8.10
PUBLIC - 6.1.3,6.6

.-.

<qualifier> - 5.7
<quantifed predicate> - 5.9, 5.10,5.13, 5.16, 5.24
<quantifier> - 5.16
QUANTIFIERct (typed by type) - 5.16
<query exprewion> - 83
QUERY.EXPRESSION - 8.3
<query specification> -4.4, 5.4, 5.8, 5.20, $.25,6.5, 6.6, 7.1, 8.3, 8.7, 8.10, 8.11, 8.12
QUERYSPECIFICATION - 5.25, 6.5,8.3,8.7
<query term> - 8.3
<quote representation> - 5.2

.R.

<range> - 5.5.1, 5.5.6
<range constraint> -5.5, 5.5.2, 5.5.3, 5.5.5, 5.5.6, 6.1.5
read-only table (see also updatable table) -4.4, 6.5, 8.3, 8.4, 8.5, 8.7, 8.8, 8.11, 8.12
REAL - 6.1., 6.1.6
represented <table name> - 5.4, .26,6.6, 7.4, 8.7
<result specification> - 5.24
rollback - 8.9
<rollback statement> - 4.12, 4.16, 7.3, 8., 8.9
ROLLBACK.WORK - 8.9
r W- 44
runtime system - 3.4, 5.3, 5.6

295 index
295

UNCLASSIFIED

.s.

SALARY - M., 5.6,5.7,5.8,5.9,5.11,5.12,5.13,5.16,5.18,5.19,5.20,
5.21,5.22,5.23,5.24,5.25,5.26,6.L3, 8.3, &.5,8.6,8.7, &.10,8.11, 8&12
<scale> - 5.5
<schema> - 3.3,4.6,4.15,5.4,5.7,5.9,5.25,6.1,6.1.2,6.2,6.4,6.5,6.6
SCHEM&..AUTHORIZ-ATON -3.5,6.1.2
<schema authorization clause> -4.6, 5.4,6.1,6.1.1, 6.1.2
<schemaauthorization identifier> -5.4,6.1.2,6.2,6.4,6.5,6.6
<schemabody element> -6.1.2, 6.1.3
SCHEMA...DEFINMTON - 3.5, 5.4, 6.1, 6.1.1, 6.1.2, 6.1.4
<schem element> - 6.1.2
< schema, package> -4.15, 5.4, 5.6, 5.7, 5.9, 6.1, 6.1.4, 6.2, 6.4, 6.5, 7.4
<schema package body> -5.2,6.1,6.1.3,6.1.4,6.2,6.4, 7.1
<schema package declaration> -6.1,6.1.2,6.1.3,6.1.4,6.4, 7.1
<schema package specification> -6.1.2,6.1.5,6.1.6,6.1.7,6.2
<schema. specification element> -6.1.2,6.1.5,6.1.6, 6.2
scope -5.4, 5.7, 5.20, L5, L11,38.12
<search condition> -5.7,5.15, 5.21,5.22,5.23, 8.5, 8.7, 8.11, 8.12
SEARCHLCONDITION - 5.7, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.24,
5.25, 8.5,8.10,8.12
SELEC - 4.15,5.6,5.7,5.8,5.9,5.11,5.12,.5.13,5.14,5.15,5.16,5.17,
5.18,5.19,5.20,5.21,5.22,5.23,5.2,535, 6.1.3,6.5, 6.6, 7.2,8&3, &6, & 7, 8.10
SELEC-.ALL - 5.24,5.25,3.16
SELEC-DISTINCT -5.24,5.25,8.10
SELECT-.ALL - L.24, 5.5, L10
SELECT-.DISTINCT -5.2A,5.25, 6.1, 6.1.3, 8.10
<select into substatement> -38.10
<select lis> -5.9,525, 8.3, 8.10
SELECT-LIST -5.5,8&10
<select statement> - 4.13,5.4,5.6,5.7,5.9,5.2D.,7.3,8., 3.10
<select target list> -3.10
<separate header> - 7.2
<separator> - 5.3
sequence -4.1
set -ti.
SET -L11, 1.12
SET..CLAUSE-t (typed by table) -38.11, 8.12
<set clause: positioned> -5.9,3.11
<set clause: searched> - 5.9,38.12
<set function specification> - 58, 5.9,5.11,5.12,5.13,5.16,5.18, 5.21,
5.23,5.24,5.25,8.10,8.11,8.12
<simple enumeration literal> -5.2,5.5.4
<simple variable name> -5.4, 7.4
<simple variable name list> -7.4
SMALLINT - 6.15, 6.1.6
<some> -5.16
SOME -5.16
<sort column specification> -38.3
<sort specdfication> - 5.7,68.3
SORT-SPECIFICATION - 8.3
<space> -5.1, 5.3, 5.11

Database Language Ala/SQL
296

UNCIASSIEDW

<special character> - 5.1
SOLCODE - 3.3
<SQL key word> - 5.3
<SQL swaement> -4.5,4.8,4.11,4.12,4.13,4.14,4.15,4.16,5.6,5.7,6.3,6.4, 7.1, 7.2, 7.3, 7.4
STANDARD (predefined environment) -5.2,5.6,5.7,5.9,6.1.5
SIANDARD.BOOLEAN - 6.1.5
STANDARD.CHARACTER -5.5.1,6.135
STA.NDARD.FLAa -5.6,5.9,6.1.5
STANDARDINTEER -5.5.6,5.6,5.9,6.1.5
STANDARD.NAIIJRAL -6.1.5

STANDARD.POSMTVE -6.1.5

STANDARD.STMON -5.4,5.6,5.9,6.1.5,7.3,7.4
STANDARD.TRUE -5.2
star (C") -5.7,5.8,5.9,5.11,5.12,5.13,5.14,5.15,5.16,5.17,5.18,
5.19,5.20,5.21,5.22,5.23,5.24,5.25, 7.2,8.3,8&7,58.10
STAR-.TYPE -5.8,5S.24, 5.2,5.10
STIUNG (STANDARD.STRING) -3.5,5.4,5.6,5.9, 6.1, 6.1.2,6.1.5, 7.3, 7.4
strong typing -5.2, 5.4,5.6,5.7,5.8,5.9,5.11,5.12,5.13,5.14,5.16,5.24,6.1.7,8.6, 8.7, 8.10, 8.11, 8.12
<subprogram specification Ada. text> - 7.2
<subquery> -5.4,5.8,5.9,5.11,5.13,5.16,5.17,5.18,5.2D, 5.21,5.23,
5.24,5.25,6.5,8.5,8.7,8.10,8.11,8.12
SUBOUERY -5.17,5.24
SUBQUERY-..t (typed by type) - 5.11, 5.13,5.16,5.24
subtype (see also base type, data type) - 4.2,4.2.1,4.2.2,4.3,4.5,4.9,
5.2, 5.4, 5.5,535.1, 5.5.,5.5.3, 5.5.4, 5.5.5, 5.5.6, 5.6, 5.7, 5.8, 5.9,
5.14,6.1.2,6.1.5,6.1.6,6.1.7,6.2,6.3,7.1,8.6,8.7, 8.10,8.11, 8.12
<subtype declaration> -4.2, 6.1.2,6.1.6
<subtype indication> - 5.5.1,5.5.3, 5.5.5,5.5.6,6.1.5,6.1.6, 6.3, 7.4
<subunit header> - 7.2
SUM -5.8
SUNLALL - 5.8
SU?&DISMICT -5.8
SYNTAX.ERROR - 3.3

.T.

t (table name function) -5.4,3.7,5.20
table -4.4
<table definition> -4.4,4.6,5.4,6.1.2, 6.2, 6.3,6.4,6.5
<table element> - 6.2
<tabl expression> -5.7,5.8,5.19,5.20,5.24,5.25,8.10
<table identifier> - 4.15,5.3,5.A, 5.7,5.20,5.26,6.2,6.4,65, 7.4
TABLEJDENTIFIER..WJTLCOLUMN-UST..a (typed by authorization identifier) - 5.2M
<table name> -4.15,5.4,5.7,5.2D, 5.24,5.25,5.26,6.2,6.4,6.5,6.6,
7.4,8.3,8S4,89.5, 8.7, 8.10,8.11,8.12
<table name> represented -5.4,5.26, 6.6,7A, 8.7
TABLENAME - SA, 6.6,8.4,835,8.7
TABLE..NAME..t (typed by tabile) - 5.4,6.4,6.6,8.11,8.12
TABLE-NAME.WMrLCOLUMN...LST -5.26,635,8.7
<table name with optional column list> -5.4, 5.26, 6.2, 6.5,6.6, 8.7
<table reference> -5.4, 5.20),5.25
target -8.6, 8.10

Index
297

UNCLASSIFIED)

F~<target specification> - 4.2,5.6, 8.6,8.10
<task header> -7.2
LCORRELAIION (generic package by table) - 5.3,7.4
LCORRELATION.NAME (generic package by table) - 5.7,5.20,7.4
<term> -5.9
TEXT.JO - 5.3,5.8,8.6,8.10
TO - 6.6
<token> -53J
transaction -4.12, 4.16,7.3,8.2,8.3,8.9
TRUE (STANDARD.TRUE) -5.2
type (see base type, data type, subtyp)
type conversion -4.2.1, 5.2, 5.6, 5.7, 5.9
<type declaration> -4.2, 6.1.2, 6.1.5
<type definition> - 6.1.5
<type identifier> -5.4,5.6,5.7,5.9,6.1.5,6.1.6
<type mark> - 4.2.1,5.2,5.4,5.5.1,55.3,5.5.5,5..6,5.6,6.1.5,6.1.6,63,7.4

-

ultimate parent type -4.2.3, 5.6, 5.7, 5.8, 5.9
unconstrained (character string - 4.2.1, 5.2, 5.5, 5.5.1, 5.5.5, 5.6, 5.7, 5.9, 63, 7.4
<unconstrained character string definition> - 5.5.1, 6.1.5
<underscore> -5.2,5.3
<underscored table name> -5.4,7.4
UION -8.3
UMN-ALL -83
UNIONED-.QUERY-EXPRESSION -8.3
UNIQUE -6.1.3,6.3,6.4

<unique column fist> -6.4
UNIQUE-.COLUMNJJST-t (typed by table) -6.4
<unique constraint definition> -4.6, 6.1.3, 6.2,6.3, 6.4
UNIQUERROR - 3.3
<unit simple name> -5.4, 6.14
universal (data typ) - 5.2, 5.6, 5.9, 6.1.7
unnamed (column of a table) (see also named column) - 5.25,65,8.3
<unsigned integer> - 8.3
updatable table (see also read-only table) -4.4,5.25, 6.5, 6.6,8.3, 8.7, 8.11, 8.12
UJPDATE - 4.15, 6.6, 8.11, 8.12
<update statement: positioned> -4.12, 4.13, 5.7, 6.5,7.3, 8., 8.11
< update statement: searched > - 4.13, 5.7, 6-, 7.3,8S., 8.12
<upper case letter> -5.1
<use clause> -5.2,6.1.2,6.1.3,6.1.4,7.2,7.4
USER -5.4,5L6,5.9,5.11,512,5.13,5.14,5.16,5.24,5.25, 8.10
USER-.ALrHORIZAIION-MENTEFIER -5.45.6
USER..VALUE-SPECIFICAIION - 5.6

.V.

VALUES -5.6, 5.26,8.7
<value expression> -5.2, 5.6,5.7,5.8, 5.9,5.11,5.12, 5.13,5.16,5.18,
5.21,5.22,5.24,5.25,6.1.7, 8.10, 8.11,8.12
VALUE..EXPRESSION -5.6, 5.7, 5.8, 5.9,5.24,5.25,8.10

Database Language Ada/SQL
298

UNCLASSIFIED

VALUE..EXPRESSIONct (typed by type) -5.6, 5.7, 5.8, 5.9, 5.11,5.12, 5.13, 5.16,5.24, 8.11
VALUE. PESSIONDATABASJNT -5.8
VALUFEXPRESSIONDATABASEUSERAUTHOR1ZATIONJDENTIFIER- 5.6
VALUE..PSESION_NUMERATION- 5.6,5.7,5.8, .
VALUELEXPRESSIONENUMERMAIONc (typed by type) -5.6,5.7,5.8,5.9
VALUE..EX ESSIONFLOATING(-5.6, 5.7,5.8,5.9
VALUFEXPRESSIONJNMEGER-5.6,5.7,5.8,5.9
VALUFLEXPRESSIONSTRING - 5.6,5.7, 5.8, SJ
<value specification> - 5.2,5.51,5.5.3,5.5.5,5.5.6,5.6,5.7,5.9,5.13,5.14,6.1.7, 8.7
VALUE-SPECIFCATION -5.6
VALUESPEC1FICATIONct (typed by type) - 5.6, 5.13,5.14
VALUSPECIFICAIIONDATABASEUSERAUTHORIZAIONIDENTIFIR - 5.6
VALUE.SPECIFICAIONENUMERATION.ct (typed by type) -5.6
<value specification factor> - 5.6
VALUE..SPECIFICATIONFLOATING -5.6
VALU&_SPECIFICAIONJNTEGER - 5.6
<value specification primary> - 5.6, 6.1.7
VALUE-SPECIFICAIIONSTRING -5.6
<value specification term> -5.6
<variable declaration> - 5.5.5,7.4
<variable name> - 4.2.1, $.4,5.6,8.6,8.10
<variable package specification> - 7.4
<variable specification> -5.6,6.1.7
<view column list> - 5.26,6.5
<view definition> - 4.4,4.6,5.4,5.26,6.1.3,6.2, 6.5, 8.7, 8.11, 8.12
viewed table -4.4,4.12,5.4,6.2,6.3,6.4,6.5,6.6, 8.7,8.11, 8.12,6.1.3

] -W-

WHERE - 5.7,5.9,5.11,5.12,5.13,5.14,5.15,5.16,5.17,5.18,5.19,5.20,
5.21, 5.22,5.23,5.24,5.25,6.5, &3,8.5,8.10,8.12
<where clause> -5.19, 5.21,5.22,5.23,5.25,6.5,8.7,8.11, 8.12
WHERE.CURRENT.rOF - M., 8.11
W 1TrtCHECKOrrION - 6.5,8.7,8.11,8.12
<with clause> - 6.1.1,6.1.2,6.1.4,7.4
WIT LGRANTOPTION - 4.15,6.6
working table -4.12

i

St ladex
d299

Distribuito List for IDA Memonumum Report M-362

NAME AND ADDRESS NUMBER OF COPIES

- Sponsor

Capt Steve Myatt 2 copies
WIS JPMO/XPT
Washington, D.C. 20330-600

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

Ms. Patricia L. Freeman 2 copies
MS-FP22255
TRW Command Support Division
Federal Systems Group
12900 Fair Lakes Parkway
Fairfax, VA 22033

Mr. Fred Friedman 1 copy
P.O. Box 576
Annandale, VA 22314

Ms. Patty Hicks 1 copy
DSAC-SR
3990 Broad St.
Columbus, OH 43216-5002

Ms. Elinor Koffee 1 copy
DSAC-SR
3990 Broad St.
Columbus, OH 43216-5002

Ms. Kerry Hilliard 1 copy
7321 Franklin Road
Annandale, VA 22003

CSED Review Panel

Dr. Dan Alpert, Director I copy
Center for Advanced Study
University of minois
912 W. Illinois Street
Urbana, Illinois 61801

NAME AND ADDRESS NUMBER OF COPIES

Dr. Barry W. Boehm I copy
TRW Defense Systems Group
MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis I copy
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel 1 copy
Software Engineering Institute
Shadyside Place
480 South Aiken Av.
Pittsburgh, PA 15231

Dr. C.E Hutchinson, Dean 1 copy
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. AJ. Jordano 1 copy
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto 1 copy
Mainstay
302 Mi St.
Occoquan, VA 22125

Mr. Oliver Selfridge 1 copy
45 Percy Road
Lexington, MA 02173

IDA

General W.Y. Smith, HQ I copy
Mr. Philip Major, HQ 1 copy
Dr. Jack Kramer, CSED 1 copy
Dr. Robert I. Winner, CSED 1 copy
Dr. John Salasin, CSED 1 copy
Mr. Bill Brykczynski, CSED 50 copies
Ms. Audrey A. Hook, CSED I copy
Ms. Katydean Price, CSED 4 copies

NAME AND ADDRESS NUMBER OF COPIES

MDA Control & Distribution Vault 3 copies

